Source code for arkouda.util

from __future__ import annotations

import builtins
import json
from typing import TYPE_CHECKING, Sequence, Tuple, Union, cast
from warnings import warn

from typeguard import typechecked

from arkouda.categorical import Categorical
from arkouda.client import generic_msg, get_config, get_mem_used
from arkouda.client_dtypes import BitVector, BitVectorizer, IPv4
from arkouda.groupbyclass import GroupBy, broadcast
from arkouda.infoclass import list_registry
from arkouda.numpy.dtypes import (
    _is_dtype_in_union,
    dtype,
    float_scalars,
    int_scalars,
    numeric_scalars,
)
from arkouda.pdarrayclass import create_pdarray, pdarray
from arkouda.pdarraycreation import arange
from arkouda.pdarraysetops import unique
from arkouda.segarray import SegArray
from arkouda.sorting import coargsort
from arkouda.strings import Strings
from arkouda.timeclass import Datetime, Timedelta

if TYPE_CHECKING:
    from arkouda.index import Index
    from arkouda.series import Series


[docs] def identity(x): return x
[docs] def get_callback(x): if type(x) in {Datetime, Timedelta, IPv4}: return type(x) elif hasattr(x, "_cast"): return x._cast elif isinstance(x, BitVector): return BitVectorizer(width=x.width, reverse=x.reverse) else: return identity
[docs] def concatenate(items, ordered=True): warn( "This function is deprecated and will be removed in a later version of Arkouda." " Use arkouda.util.generic_concat(items, ordered) instead.", DeprecationWarning, ) return generic_concat(items, ordered=ordered)
[docs] def generic_concat(items, ordered=True): # this version can be called with Dataframe and Series (which have Class.concat methods) from arkouda.pdarraysetops import concatenate as pdarrayconcatenate types = {type(x) for x in items} if len(types) != 1: raise TypeError(f"Items must all have same type: {types}") t = types.pop() if t is list: return [x for lst in items for x in lst] return ( t.concat(items, ordered=ordered) if hasattr(t, "concat") else pdarrayconcatenate(items, ordered=ordered) )
[docs] def report_mem(pre=""): cfg = get_config() used = get_mem_used() / (cfg["numLocales"] * cfg["physicalMemory"]) print(f"{pre} mem use: {get_mem_used()/(1024**4): .2f} TB ({used:.1%})")
[docs] def enrich_inplace(data, keynames, aggregations, **kwargs): warn( "This function is deprecated and will be removed in a later version of Arkouda.", DeprecationWarning, ) # TO DO: validate reductions and values try: keys = data[keynames] except (KeyError, TypeError): keys = [data[k] for k in keynames] g = GroupBy(keys, **kwargs) for resname, (reduction, values) in aggregations.items(): try: values = data[values] except (KeyError, TypeError): pass if reduction == "count": pergroupval = g.size()[1] else: pergroupval = g.aggregate(values, reduction)[1] data[resname] = g.broadcast(pergroupval, permute=True)
[docs] def expand(size, segs, vals): """ Expand an array with values placed into the indicated segments. Parameters ---------- size : ak.pdarray The size of the array to be expanded segs : ak.pdarray The indices where the values should be placed vals : ak.pdarray The values to be placed in each segment Returns ------- pdarray The expanded array. Notes ----- This function (with different order of arguments) is now in arkouda proper as ak.broadcast. It is retained here for backwards compatibility. """ warn( "This function is deprecated and will be removed in a later version of Arkouda." " Use arkouda.broadcast(segments, values, size) instead.", DeprecationWarning, ) return broadcast(segs, vals, size=size)
[docs] def invert_permutation(perm): """ Find the inverse of a permutation array. Parameters ---------- perm : ak.pdarray The permutation array. Returns ------- ak.array The inverse of the permutation array. """ if unique(perm).size != perm.size: raise ValueError("The array is not a permutation.") return coargsort([perm, arange(0, perm.size)])
[docs] def most_common(g, values): warn( "This function is deprecated and will be removed in a later version of Arkouda." " Use arkouda.GroupBy.most_common(values) instead.", DeprecationWarning, ) return g.most_common(values)
[docs] def convert_if_categorical(values): """ Convert a Categorical array to Strings for display """ if isinstance(values, Categorical): values = values.categories[values.codes] return values
[docs] def register(obj, name): """ Register an arkouda object with a user-specified name. Backwards compatible with earlier arkouda versions. """ return obj.register(name)
[docs] @typechecked def attach(name: str): from arkouda.dataframe import DataFrame from arkouda.index import Index, MultiIndex from arkouda.pdarrayclass import pdarray from arkouda.series import Series rep_msg = json.loads(cast(str, generic_msg(cmd="attach", args={"name": name}))) rtn_obj = None if rep_msg["objType"].lower() == pdarray.objType.lower(): rtn_obj = create_pdarray(rep_msg["create"]) elif rep_msg["objType"].lower() == Strings.objType.lower(): rtn_obj = Strings.from_return_msg(rep_msg["create"]) elif rep_msg["objType"].lower() == Datetime.special_objType.lower(): rtn_obj = Datetime(create_pdarray(rep_msg["create"])) elif rep_msg["objType"].lower() == Timedelta.special_objType.lower(): rtn_obj = Timedelta(create_pdarray(rep_msg["create"])) elif rep_msg["objType"].lower() == IPv4.special_objType.lower(): rtn_obj = IPv4(create_pdarray(rep_msg["create"])) elif rep_msg["objType"].lower() == SegArray.objType.lower(): rtn_obj = SegArray.from_return_msg(rep_msg["create"]) elif rep_msg["objType"].lower() == DataFrame.objType.lower(): rtn_obj = DataFrame.from_return_msg(rep_msg["create"]) elif rep_msg["objType"].lower() == GroupBy.objType.lower(): rtn_obj = GroupBy.from_return_msg(rep_msg["create"]) elif rep_msg["objType"].lower() == Categorical.objType.lower(): rtn_obj = Categorical.from_return_msg(rep_msg["create"]) elif ( rep_msg["objType"].lower() == Index.objType.lower() or rep_msg["objType"].lower() == MultiIndex.objType.lower() ): rtn_obj = Index.from_return_msg(rep_msg["create"]) elif rep_msg["objType"].lower() == Series.objType.lower(): rtn_obj = Series.from_return_msg(rep_msg["create"]) elif rep_msg["objType"].lower() == BitVector.special_objType.lower(): rtn_obj = BitVector.from_return_msg(rep_msg["create"]) if rtn_obj is not None: rtn_obj.registered_name = name return rtn_obj
[docs] @typechecked def unregister(name: str) -> str: rep_msg = cast(str, generic_msg(cmd="unregister", args={"name": name})) return rep_msg
[docs] @typechecked def is_registered(name: str, as_component: bool = False) -> bool: """ Determine if the name provided is associated with a registered Object Parameters ---------- name: str The name to check for in the registry as_component: bool Default: False When True, the name will be checked to determine if it is registered as a component of a registered object Return ------- bool """ return name in list_registry()["Components" if as_component else "Objects"]
[docs] def register_all(data: dict): """ Register all objects in the provided dictionary Parameters ----------- data: dict Maps name to register the object to the object. For example, {"MyArray": ak.array([0, 1, 2]) Returns -------- None """ for reg_name, obj in data.items(): register(obj, reg_name)
[docs] def unregister_all(names: list): """ Unregister all names provided Parameters ----------- names : list List of names used to register objects to be unregistered Returns -------- None """ for n in names: unregister(n)
[docs] def attach_all(names: list): """ Attach to all objects registered with the names provide Parameters ----------- names: list List of names to attach to Returns -------- dict """ return {n: attach(n) for n in names}
[docs] def sparse_sum_help(idx1, idx2, val1, val2, merge=True, percent_transfer_limit=100): """ Helper for summing two sparse matrices together Return is equivalent to ak.GroupBy(ak.concatenate([idx1, idx2])).sum(ak.concatenate((val1, val2))) Parameters ----------- idx1: pdarray indices for the first sparse matrix idx2: pdarray indices for the second sparse matrix val1: pdarray values for the first sparse matrix val2: pdarray values for the second sparse matrix merge: bool If true the indices are combined using a merge based workflow, otherwise they are combine using a sort based workflow. percent_transfer_limit: int Only used when merge is true. This is the maximum percentage of the data allowed to be moved between locales during the merge workflow. If we would exceed this percentage, we fall back to using the sort based workflow. Returns -------- (pdarray, pdarray) indices and values for the summed sparse matrix Examples -------- >>> idx1 = ak.array([0, 1, 3, 4, 7, 9]) >>> idx2 = ak.array([0, 1, 3, 6, 9]) >>> vals1 = idx1 >>> vals2 = ak.array([10, 11, 13, 16, 19]) >>> ak.util.sparse_sum_help(idx1, inds2, vals1, vals2) (array([0 1 3 4 6 7 9]), array([10 12 16 4 16 7 28])) >>> ak.GroupBy(ak.concatenate([idx1, idx2])).sum(ak.concatenate((vals1, vals2))) (array([0 1 3 4 6 7 9]), array([10 12 16 4 16 7 28])) """ repMsg = generic_msg( cmd="sparseSumHelp", args={ "idx1": idx1, "idx2": idx2, "val1": val1, "val2": val2, "merge": merge, "percent_transfer_limit": percent_transfer_limit, }, ) inds, vals = repMsg.split("+", maxsplit=1) return create_pdarray(inds), create_pdarray(vals)
[docs] def broadcast_dims(sa: Sequence[int], sb: Sequence[int]) -> Tuple[int, ...]: """ Algorithm to determine shape of broadcasted PD array given two array shapes see: https://data-apis.org/array-api/latest/API_specification/broadcasting.html#algorithm """ Na = len(sa) Nb = len(sb) N = max(Na, Nb) shapeOut = [0 for i in range(N)] i = N - 1 while i >= 0: n1 = Na - N + i n2 = Nb - N + i d1 = sa[n1] if n1 >= 0 else 1 d2 = sb[n2] if n2 >= 0 else 1 if d1 == 1: shapeOut[i] = d2 elif d2 == 1: shapeOut[i] = d1 elif d1 == d2: shapeOut[i] = d1 else: raise ValueError("Incompatible dimensions for broadcasting") i -= 1 return tuple(shapeOut)
[docs] def convert_bytes(nbytes, unit="B"): """ Convert the number of bytes to KB, MB, or GB. Parameters ---------- unit : str, default = "B" Unit to return. One of {'B', 'KB', 'MB', 'GB'}. Returns ------- int """ kb = 1024 mb = kb * kb gb = mb * kb if unit == "B": return nbytes elif unit == "KB": return nbytes / kb elif unit == "MB": return nbytes / mb elif unit == "GB": return nbytes / gb
[docs] def is_numeric( arry: Union[pdarray, Strings, Categorical, "Series", "Index"] # noqa: F821 ) -> builtins.bool: """ Check if the dtype of the given array is numeric. Parameters: arry ((pdarray, Strings, Categorical)): The input pdarray, Strings, or Categorical object. Returns ------- bool: True if the dtype of pda is numeric, False otherwise. Example: >>> import arkouda as ak >>> ak.connect() >>> data = ak.array([1, 2, 3, 4, 5]) >>> is_numeric(data) True >>> strings = ak.array(["a", "b", "c"]) >>> is_numeric(strings) False """ from arkouda.index import Index from arkouda.series import Series if isinstance(arry, (pdarray, Series, Index)): return _is_dtype_in_union(dtype(arry.dtype), numeric_scalars) else: return False
[docs] def is_float(arry: Union[pdarray, Strings, Categorical, "Series", "Index"]): # noqa: F821 """ Check if the dtype of the given array is float. Parameters: arry ((pdarray, Strings, Categorical)): The input pdarray, Strings, or Categorical object. Returns ------- bool: True if the dtype of pda is of type float, False otherwise. Example: >>> import arkouda as ak >>> ak.connect() >>> data = ak.array([1.0, 2, 3, 4, np.nan]) >>> is_float(data) True >>> data2 = ak.arange(5) >>> is_float(data2) False """ from arkouda.index import Index from arkouda.series import Series if isinstance(arry, (pdarray, Series, Index)): return _is_dtype_in_union(dtype(arry.dtype), float_scalars) else: return False
[docs] def is_int(arry: Union[pdarray, Strings, Categorical, "Series", "Index"]): # noqa: F821 """ Check if the dtype of the given array is int. Parameters ---------- arry ((pdarray, Strings, Categorical)): The input pdarray, Strings, or Categorical object. Returns ------- bool: True if the dtype of pda is of type int, False otherwise. Example: >>> import arkouda as ak >>> ak.connect() >>> data = ak.array([1.0, 2, 3, 4, np.nan]) >>> is_int(data) False >>> data2 = ak.arange(5) >>> is_int(data2) True """ from arkouda.index import Index from arkouda.series import Series if isinstance(arry, (pdarray, Series, Index)): return _is_dtype_in_union(dtype(arry.dtype), int_scalars) else: return False
[docs] def map( values: Union[pdarray, Strings, Categorical], mapping: Union[dict, "Series"] ) -> Union[pdarray, Strings]: """ Map values of an array according to an input mapping. Parameters ---------- values : pdarray, Strings, or Categorical The values to be mapped. mapping : dict or arkouda.Series The mapping correspondence. Returns ------- arkouda.pdarrayclass.pdarray or arkouda.strings.Strings A new array with the values mapped by the mapping correspondence. When the input Series has Categorical values, the return Series will have Strings values. Otherwise, the return type will match the input type. Raises ------ TypeError Raised if arg is not of type dict or arkouda.Series. Raised if values not of type pdarray, Categorical, or Strings. Examples -------- >>> import arkouda as ak >>> ak.connect() >>> from arkouda.util import map >>> a = ak.array([2, 3, 2, 3, 4]) >>> a array([2 3 2 3 4]) >>> map(a, {4: 25.0, 2: 30.0, 1: 7.0, 3: 5.0}) array([30.00000000000000000 5.00000000000000000 30.00000000000000000 5.00000000000000000 25.00000000000000000]) >>> s = ak.Series(ak.array(["a","b","c","d"]), index = ak.array([4,2,1,3])) >>> map(a, s) array(['b', 'b', 'd', 'd', 'a']) """ import numpy as np from arkouda import Series, array, broadcast, full from arkouda.pdarraysetops import in1d keys = values gb = GroupBy(keys, dropna=False) gb_keys = gb.unique_keys if isinstance(mapping, dict): mapping = Series([array(list(mapping.keys())), array(list(mapping.values()))]) if isinstance(mapping, Series): xtra_keys = gb_keys[in1d(gb_keys, mapping.index.values, invert=True)] if xtra_keys.size > 0: if not isinstance(mapping.values, (Strings, Categorical)): nans = full(xtra_keys.size, np.nan, mapping.values.dtype) else: nans = full(xtra_keys.size, "null") if isinstance(xtra_keys, Categorical): xtra_keys = xtra_keys.to_strings() xtra_series = Series(nans, index=xtra_keys) mapping = Series.concat([mapping, xtra_series]) if isinstance(gb_keys, Categorical): mapping = mapping[gb_keys.to_strings()] else: mapping = mapping[gb_keys] if isinstance(mapping.values, (pdarray, Strings)): return broadcast(gb.segments, mapping.values, permutation=gb.permutation) else: raise TypeError("Map values must be castable to pdarray or Strings.") else: raise TypeError("Map must be dict or arkouda.Series.")
def _infer_shape_from_size(size): shape: Union[int_scalars, Tuple[int_scalars, ...]] = 1 if isinstance(size, tuple): shape = cast(Tuple, size) full_size = 1 for s in cast(Tuple, shape): full_size *= s ndim = len(shape) else: full_size = cast(int, size) shape = full_size ndim = 1 return shape, ndim, full_size