arkouda.scipy¶
Submodules¶
Classes¶
The results of a power divergence statistical test. |
Functions¶
|
Computes the chi square statistic and p-value. |
|
Computes the power divergence statistic and p-value. |
Module Contents¶
- class arkouda.scipy.Power_divergenceResult[source]¶
Bases:
Power_divergenceResult
The results of a power divergence statistical test.
- statistic¶
- Type:
- pvalue¶
- Type:
- arkouda.scipy.chisquare(f_obs, f_exp=None, ddof=0)[source]¶
Computes the chi square statistic and p-value.
- Parameters:
- Return type:
arkouda.akstats.Power_divergenceResult
Examples
>>> import arkouda as ak >>> ak.connect() >>> from arkouda.stats import chisquare >>> chisquare(ak.array([10, 20, 30, 10]), ak.array([10, 30, 20, 10])) Power_divergenceResult(statistic=8.333333333333334, pvalue=0.03960235520756414)
See also
scipy.stats.chisquare
,arkouda.akstats.power_divergence
References
[1] “Chi-squared test”, https://en.wikipedia.org/wiki/Chi-squared_test
[2] “scipy.stats.chisquare”, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html
- arkouda.scipy.power_divergence(f_obs, f_exp=None, ddof=0, lambda_=None)[source]¶
Computes the power divergence statistic and p-value.
- Parameters:
f_obs (pdarray) – The observed frequency.
f_exp (pdarray, default = None) – The expected frequency.
ddof (int) – The delta degrees of freedom.
lambda (string, default = "pearson") –
The power in the Cressie-Read power divergence statistic. Allowed values: “pearson”, “log-likelihood”, “freeman-tukey”, “mod-log-likelihood”, “neyman”, “cressie-read”
Powers correspond as follows:
”pearson”: 1
”log-likelihood”: 0
”freeman-tukey”: -0.5
”mod-log-likelihood”: -1
”neyman”: -2
”cressie-read”: 2 / 3
- Return type:
arkouda.akstats.Power_divergenceResult
Examples
>>> import arkouda as ak >>> ak.connect() >>> from arkouda.stats import power_divergence >>> x = ak.array([10, 20, 30, 10]) >>> y = ak.array([10, 30, 20, 10]) >>> power_divergence(x, y, lambda_="pearson") Power_divergenceResult(statistic=8.333333333333334, pvalue=0.03960235520756414) >>> power_divergence(x, y, lambda_="log-likelihood") Power_divergenceResult(statistic=8.109302162163285, pvalue=0.04380595350226197)
See also
scipy.stats.power_divergence
,arkouda.akstats.chisquare
Notes
This is a modified version of scipy.stats.power_divergence [2] in order to scale using arkouda pdarrays.
References
[1] “scipy.stats.power_divergence”, https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.power_divergence.html
[2] Scipy contributors (2024) scipy (Version v1.12.0) [Source code]. https://github.com/scipy/scipy