Source code for arkouda.strings

from __future__ import annotations

import codecs
import itertools
import re
from typing import Dict, List, Optional, Tuple, Union, cast

import numpy as np
from typeguard import typechecked

import arkouda.numpy.dtypes
from arkouda.client import generic_msg
from arkouda.numpy.dtypes import NUMBER_FORMAT_STRINGS
from arkouda.numpy.dtypes import dtype as akdtype
from arkouda.numpy.dtypes import (
    int_scalars,
    resolve_scalar_dtype,
    str_,
    str_scalars,
)
from arkouda.infoclass import information, list_symbol_table
from arkouda.logger import getArkoudaLogger
from arkouda.match import Match, MatchType
from arkouda.pdarrayclass import RegistrationError
from arkouda.pdarrayclass import all as akall
from arkouda.pdarrayclass import create_pdarray, parse_single_value, pdarray

__all__ = ["Strings"]

# Command strings for message passing to arkouda server, specific to Strings
CMD_ASSEMBLE = "segStr-assemble"
CMD_TO_NDARRAY = "segStr-tondarray"


[docs] class Strings: """ Represents an array of strings whose data resides on the arkouda server. The user should not call this class directly; rather its instances are created by other arkouda functions. Attributes ---------- entry : pdarray Encapsulation of a Segmented Strings array contained on the arkouda server. This is a composite of - offsets array: starting indices for each string - bytes array: raw bytes of all strings joined by nulls size : int_scalars The number of strings in the array nbytes : int_scalars The total number of bytes in all strings ndim : int_scalars The rank of the array (currently only rank 1 arrays supported) shape : tuple The sizes of each dimension of the array dtype : dtype The dtype is ak.str logger : ArkoudaLogger Used for all logging operations Notes ----- Strings is composed of two pdarrays: (1) offsets, which contains the starting indices for each string and (2) bytes, which contains the raw bytes of all strings, delimited by nulls. """ BinOps = frozenset(["==", "!="]) objType = "Strings"
[docs] @staticmethod def from_return_msg(rep_msg: str) -> Strings: """ Factory method for creating a Strings object from an Arkouda server response message Parameters ---------- rep_msg : str Server response message currently of form `created name type size ndim shape itemsize+created bytes.size 1234` Returns ------- Strings object representing a segmented strings array on the server Raises ------ RuntimeError Raised if there's an error converting a server-returned str-descriptor Notes ----- We really don't have an itemsize because these are variable length strings. In the future we could probably use this position to store the total bytes. """ left, right = cast(str, rep_msg).split("+") bytes_size: int_scalars = int(right.split()[-1]) return Strings(create_pdarray(left), bytes_size)
[docs] @staticmethod def from_parts(offset_attrib: Union[pdarray, str], bytes_attrib: Union[pdarray, str]) -> Strings: """ Factory method for creating a Strings object from an Arkouda server response where the arrays are separate components. Parameters ---------- offset_attrib : Union[pdarray, str] the array containing the offsets bytes_attrib : Union[pdarray, str] the array containing the string values Returns ------- Strings object representing a segmented strings array on the server Raises ------ RuntimeError Raised if there's an error converting a server-returned str-descriptor Notes ----- This factory method is used when we construct the parts of a Strings object on the client side and transfer the offsets & bytes separately to the server. This results in two entries in the symbol table and we need to instruct the server to assemble the into a composite entity. """ if not isinstance(offset_attrib, pdarray): try: offset_attrib = create_pdarray(offset_attrib) except Exception as e: raise RuntimeError(e) if not isinstance(bytes_attrib, pdarray): try: bytes_attrib = create_pdarray(bytes_attrib) except Exception as e: raise RuntimeError(e) # Now we have two pdarray objects response = cast( str, generic_msg(cmd=CMD_ASSEMBLE, args={"offsets": offset_attrib, "values": bytes_attrib}) ) return Strings.from_return_msg(response)
def __init__(self, strings_pdarray: pdarray, bytes_size: int_scalars) -> None: """ Initializes the Strings instance by setting all instance attributes, some of which are derived from the array parameters. Parameters ---------- strings_pdarray : pdarray the array containing the meta-info on a server side strings object bytes_size : int_scalars length of the bytes array contained on the server aka total bytes Returns ------- None Raises ------ RuntimeError Raised if there's an error converting a server-returned str-descriptor or pdarray to either the offset_attrib or bytes_attrib ValueError Raised if there's an error in generating instance attributes from either the offset_attrib or bytes_attrib parameter """ self.entry: pdarray = strings_pdarray self.registered_name: Optional[str] = None try: self.size = self.entry.size self.nbytes = bytes_size # This is a deficiency of server GenSymEntry right now self.ndim = self.entry.ndim self.shape = self.entry.shape self.name: Optional[str] = self.entry.name except Exception as e: raise ValueError(e) self._bytes: Optional[pdarray] = None self._offsets: Optional[pdarray] = None self.dtype = akdtype(str_) self._regex_dict: Dict = dict() self.logger = getArkoudaLogger(name=__class__.__name__) # type: ignore """ NOTE: The Strings.__del__() method should NOT be implemented. Python will invoke the __del__() of any components by default. Overriding this default behavior with an explicitly specified Strings.__del__() method may introduce unknown symbol errors. By allowing Python's garbage collecting to handle this automatically, we avoid extra maintenance """ def __iter__(self): raise NotImplementedError( "Strings does not support iteration. To force data transfer from server, use to_ndarray" ) def __len__(self) -> int: return self.shape[0] def __str__(self) -> str: from arkouda.client import pdarrayIterThresh if self.size <= pdarrayIterThresh: vals = [f"'{self[i]}'" for i in range(self.size)] else: vals = [f"'{self[i]}'" for i in range(3)] vals.append("... ") vals.extend([f"'{self[i]}'" for i in range(self.size - 3, self.size)]) return "[{}]".format(", ".join(vals)) def __repr__(self) -> str: return f"array({self.__str__()})" @typechecked def _binop(self, other: Union[Strings, str_scalars], op: str) -> pdarray: """ Executes the requested binop on this Strings instance and the parameter Strings object and returns the results within a pdarray object. Parameters ---------- other : Strings, str_scalars the other object is a Strings object op : str name of the binary operation to be performed Returns ------- pdarray encapsulating the results of the requested binop Raises ----- ValueError Raised if (1) the op is not in the self.BinOps set, or (2) if the sizes of this and the other instance don't match, or (3) the other object is not a Strings object RuntimeError Raised if a server-side error is thrown while executing the binary operation """ if op not in self.BinOps: raise ValueError(f"Strings: unsupported operator: {op}") if isinstance(other, Strings): if self.size != other.size: raise ValueError(f"Strings: size mismatch {self.size} {other.size}") cmd = "segmentedBinopvv" args = { "op": op, "objType": self.objType, "obj": self.entry, "otherType": other.objType, "other": other.entry, "left": False, # placeholder for stick "delim": "", # placeholder for stick } elif resolve_scalar_dtype(other) == "str": cmd = "segmentedBinopvs" args = { "op": op, "objType": self.objType, "obj": self.entry, "otherType": "str", "other": other, } else: raise ValueError( f"Strings: {op} not supported between Strings and {other.__class__.__name__}" ) return create_pdarray(generic_msg(cmd=cmd, args=args)) def __eq__(self, other) -> bool: return self._binop(other, "==") def __ne__(self, other) -> bool: return self._binop(cast(Strings, other), "!=") def __getitem__(self, key): if np.isscalar(key) and (resolve_scalar_dtype(key) in ["int64", "uint64"]): orig_key = key if key < 0: # Interpret negative key as offset from end of array key += self.size if key >= 0 and key < self.size: repMsg = generic_msg( cmd="segmentedIndex", args={ "subcmd": "intIndex", "objType": self.objType, "dtype": self.entry.dtype, "obj": self.entry, "key": key, }, ) _, value = repMsg.split(maxsplit=1) return parse_single_value(value) else: raise IndexError(f"[int] {orig_key} is out of bounds with size {self.size}") elif isinstance(key, slice): (start, stop, stride) = key.indices(self.size) self.logger.debug(f"start: {start}; stop: {stop}; stride: {stride}") repMsg = generic_msg( cmd="segmentedIndex", args={ "subcmd": "sliceIndex", "objType": self.objType, "obj": self.entry, "dtype": self.entry.dtype, "key": [start, stop, stride], }, ) return Strings.from_return_msg(repMsg) elif isinstance(key, pdarray): if key.dtype not in ("bool", "int", "uint"): raise TypeError(f"unsupported pdarray index type {key.dtype}") if key.dtype == "bool" and self.size != key.size: raise ValueError(f"size mismatch {self.size} {key.size}") repMsg = generic_msg( cmd="segmentedIndex", args={ "subcmd": "pdarrayIndex", "objType": self.objType, "dtype": self.entry.dtype, "obj": self.entry, "key": key, }, ) return Strings.from_return_msg(repMsg) else: raise TypeError(f"unsupported pdarray index type {key.__class__.__name__}") @property def inferred_type(self) -> str: """ Return a string of the type inferred from the values. """ return "string"
[docs] def equals(self, other) -> bool: """ Whether Strings are the same size and all entries are equal. Parameters ---------- other : object object to compare. Returns ------- bool True if the Strings are the same, o.w. False. Examples -------- >>> import arkouda as ak >>> ak.connect() >>> s = ak.array(["a", "b", "c"]) >>> s_cpy = ak.array(["a", "b", "c"]) >>> s.equals(s_cpy) True >>> s2 = ak.array(["a", "x", "c"]) >>> s.equals(s2) False """ if isinstance(other, Strings): if other.size != self.size: return False else: return akall(self == other) else: return False
[docs] def get_lengths(self) -> pdarray: """ Return the length of each string in the array. Returns ------- pdarray, int The length of each string Raises ------ RuntimeError Raised if there is a server-side error thrown """ return create_pdarray( generic_msg(cmd="segmentLengths", args={"objType": self.objType, "obj": self.entry}) )
[docs] def get_bytes(self): """ Getter for the bytes component (uint8 pdarray) of this Strings. Returns ------- pdarray, uint8 Pdarray of bytes of the string accessed Example ------- >>> x = ak.array(['one', 'two', 'three']) >>> x.get_bytes() [111 110 101 0 116 119 111 0 116 104 114 101 101 0] """ if self._bytes is None or self._bytes.name not in list_symbol_table(): self._bytes = create_pdarray( generic_msg( cmd="getSegStringProperty", args={"property": "get_bytes", "obj": self.entry} ) ) return self._bytes
[docs] def get_offsets(self): """ Getter for the offsets component (int64 pdarray) of this Strings. Returns ------- pdarray, int64 Pdarray of offsets of the string accessed Example ------- >>> x = ak.array(['one', 'two', 'three']) >>> x.get_offsets() [0 4 8] """ if self._offsets is None or self._offsets.name not in list_symbol_table(): self._offsets = create_pdarray( generic_msg( cmd="getSegStringProperty", args={"property": "get_offsets", "obj": self.entry} ) ) return self._offsets
[docs] def encode(self, toEncoding: str, fromEncoding: str = "UTF-8"): """ Return a new strings object in `toEncoding`, expecting that the current Strings is encoded in `fromEncoding` Parameters ---------- toEncoding: str The encoding that the strings will be converted to fromEncoding: str The current encoding of the strings object, default to UTF-8 Returns ------- Strings A new Strings object in `toEncoding` Raises ------ RuntimeError Raised if there is a server-side error thrown """ if (toEncoding.upper() == "IDNA" and fromEncoding.upper() != "UTF-8") or ( toEncoding.upper() != "UTF-8" and fromEncoding.upper() == "IDNA" ): # first convert to UTF-8 rep_msg = generic_msg( cmd="encode", args={ "toEncoding": "UTF-8", "fromEncoding": fromEncoding, "obj": self.entry, }, ) intermediate = Strings.from_return_msg(cast(str, rep_msg)) # now go to idna rep_msg = generic_msg( cmd="encode", args={ "toEncoding": toEncoding, "fromEncoding": "UTF-8", "obj": intermediate, }, ) return Strings.from_return_msg(cast(str, rep_msg)) rep_msg = generic_msg( cmd="encode", args={ "toEncoding": toEncoding, "fromEncoding": fromEncoding, "obj": self.entry, }, ) return Strings.from_return_msg(cast(str, rep_msg))
[docs] def decode(self, fromEncoding, toEncoding="UTF-8"): """ Return a new strings object in `fromEncoding`, expecting that the current Strings is encoded in `toEncoding` Parameters ---------- fromEncoding: str The current encoding of the strings object toEncoding: str The encoding that the strings will be converted to, default to UTF-8 Returns ------- Strings A new Strings object in `toEncoding` Raises ------ RuntimeError Raised if there is a server-side error thrown """ return self.encode(toEncoding, fromEncoding)
[docs] @typechecked def lower(self) -> Strings: """ Returns a new Strings with all uppercase characters from the original replaced with their lowercase equivalent Returns ------- Strings Strings with all uppercase characters from the original replaced with their lowercase equivalent Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.upper Examples -------- >>> strings = ak.array([f'StrINgS {i}' for i in range(5)]) >>> strings array(['StrINgS 0', 'StrINgS 1', 'StrINgS 2', 'StrINgS 3', 'StrINgS 4']) >>> strings.lower() array(['strings 0', 'strings 1', 'strings 2', 'strings 3', 'strings 4']) """ rep_msg = generic_msg( cmd="caseChange", args={"subcmd": "toLower", "objType": self.objType, "obj": self.entry} ) return Strings.from_return_msg(cast(str, rep_msg))
[docs] @typechecked def upper(self) -> Strings: """ Returns a new Strings with all lowercase characters from the original replaced with their uppercase equivalent Returns ------- Strings Strings with all lowercase characters from the original replaced with their uppercase equivalent Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.lower Examples -------- >>> strings = ak.array([f'StrINgS {i}' for i in range(5)]) >>> strings array(['StrINgS 0', 'StrINgS 1', 'StrINgS 2', 'StrINgS 3', 'StrINgS 4']) >>> strings.upper() array(['STRINGS 0', 'STRINGS 1', 'STRINGS 2', 'STRINGS 3', 'STRINGS 4']) """ rep_msg = generic_msg( cmd="caseChange", args={"subcmd": "toUpper", "objType": self.objType, "obj": self.entry} ) return Strings.from_return_msg(cast(str, rep_msg))
[docs] @typechecked def title(self) -> Strings: """ Returns a new Strings from the original replaced with their titlecase equivalent. Returns ------- Strings Strings from the original replaced with their titlecase equivalent. Raises ------ RuntimeError Raised if there is a server-side error thrown. See Also -------- Strings.lower String.upper Examples -------- >>> strings = ak.array([f'StrINgS {i}' for i in range(5)]) >>> strings array(['StrINgS 0', 'StrINgS 1', 'StrINgS 2', 'StrINgS 3', 'StrINgS 4']) >>> strings.title() array(['Strings 0', 'Strings 1', 'Strings 2', 'Strings 3', 'Strings 4']) """ rep_msg = generic_msg( cmd="caseChange", args={"subcmd": "toTitle", "objType": self.objType, "obj": self.entry} ) return Strings.from_return_msg(cast(str, rep_msg))
[docs] @typechecked def isdecimal(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings has all decimal characters. Returns ------- pdarray, bool True for elements that are decimals, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.isdigit Examples -------- >>> not_decimal = ak.array([f'Strings {i}' for i in range(3)]) >>> decimal = ak.array([f'12{i}' for i in range(3)]) >>> strings = ak.concatenate([not_decimal, decimal]) >>> strings array(['Strings 0', 'Strings 1', 'Strings 2', '120', '121', '122']) >>> strings.isdecimal() array([False False False True True True]) Special Character Examples >>> special_strings = ak.array(["3.14", "\u0030", "\u00B2", "2³₇", "2³x₇"]) >>> special_strings array(['3.14', '0', '²', '2³₇', '2³x₇']) >>> special_strings.isdecimal() array([False True False False False]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isDecimal", "objType": self.objType, "obj": self.entry}, ) )
[docs] @typechecked def capitalize(self) -> Strings: """ Returns a new Strings from the original replaced with the first letter capitilzed and the remaining letters lowercase. Returns ------- Strings Strings from the original replaced with the capitalized equivalent. Raises ------ RuntimeError Raised if there is a server-side error thrown. See Also -------- Strings.lower String.upper String.title Examples -------- >>> strings = ak.array([f'StrINgS aRe Here {i}' for i in range(5)]) >>> strings array(['StrINgS aRe Here 0', 'StrINgS aRe Here 1', 'StrINgS aRe Here 2', 'StrINgS aRe Here 3', ... 'StrINgS aRe Here 4']) >>> strings.title() array(['Strings are here 0', 'Strings are here 1', 'Strings are here 2', 'Strings are here 3', ... 'Strings are here 4']) """ rep_msg = generic_msg( cmd="caseChange", args={"subcmd": "capitalize", "objType": self.objType, "obj": self.entry} ) return Strings.from_return_msg(cast(str, rep_msg))
[docs] @typechecked def islower(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings is entirely lowercase Returns ------- pdarray, bool True for elements that are entirely lowercase, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.isupper Examples -------- >>> lower = ak.array([f'strings {i}' for i in range(3)]) >>> upper = ak.array([f'STRINGS {i}' for i in range(3)]) >>> strings = ak.concatenate([lower, upper]) >>> strings array(['strings 0', 'strings 1', 'strings 2', 'STRINGS 0', 'STRINGS 1', 'STRINGS 2']) >>> strings.islower() array([True True True False False False]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isLower", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def isupper(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings is entirely uppercase Returns ------- pdarray, bool True for elements that are entirely uppercase, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Examples -------- >>> lower = ak.array([f'strings {i}' for i in range(3)]) >>> upper = ak.array([f'STRINGS {i}' for i in range(3)]) >>> strings = ak.concatenate([lower, upper]) >>> strings array(['strings 0', 'strings 1', 'strings 2', 'STRINGS 0', 'STRINGS 1', 'STRINGS 2']) >>> strings.isupper() array([False False False True True True]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isUpper", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def istitle(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings is titlecase Returns ------- pdarray, bool True for elements that are titlecase, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Strings.isupper Examples -------- >>> mixed = ak.array([f'sTrINgs {i}' for i in range(3)]) >>> title = ak.array([f'Strings {i}' for i in range(3)]) >>> strings = ak.concatenate([mixed, title]) >>> strings array(['sTrINgs 0', 'sTrINgs 1', 'sTrINgs 2', 'Strings 0', 'Strings 1', 'Strings 2']) >>> strings.istitle() array([False False False True True True]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isTitle", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def isalnum(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings is alphanumeric. Returns ------- pdarray, bool True for elements that are alphanumeric, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Strings.isupper Strings.istitle Examples -------- >>> not_alnum = ak.array([f'%Strings {i}' for i in range(3)]) >>> alnum = ak.array([f'Strings{i}' for i in range(3)]) >>> strings = ak.concatenate([not_alnum, alnum]) >>> strings array(['%Strings 0', '%Strings 1', '%Strings 2', 'Strings0', 'Strings1', 'Strings2']) >>> strings.isalnum() array([False False False True True True]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isalnum", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def isalpha(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings is alphabetic. This means there is at least one character, and all the characters are alphabetic. Returns ------- pdarray, bool True for elements that are alphabetic, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Strings.isupper Strings.istitle Strings.isalnum Examples -------- >>> not_alpha = ak.array([f'%Strings {i}' for i in range(3)]) >>> alpha = ak.array(['StringA','StringB','StringC']) >>> strings = ak.concatenate([not_alpha, alpha]) >>> strings array(['%Strings 0', '%Strings 1', '%Strings 2', 'StringA','StringB','StringC']) >>> strings.isalpha() array([False False False True True True]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isalpha", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def isdigit(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings has all digit characters. Returns ------- pdarray, bool True for elements that are digits, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Strings.isupper Strings.istitle Examples -------- >>> not_digit = ak.array([f'Strings {i}' for i in range(3)]) >>> digit = ak.array([f'12{i}' for i in range(3)]) >>> strings = ak.concatenate([not_digit, digit]) >>> strings array(['Strings 0', 'Strings 1', 'Strings 2', '120', '121', '122']) >>> strings.isdigit() array([False False False True True True]) Special Character Examples >>> special_strings = ak.array(["3.14", "\u0030", "\u00B2", "2³₇", "2³x₇"]) >>> special_strings array(['3.14', '0', '²', '2³₇', '2³x₇']) >>> special_strings.isdigit() array([False True True True False]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isdigit", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def isempty(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i of the Strings is empty. True for elements that are the empty string, False otherwise Returns ------- pdarray, bool True for elements that are digits, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Strings.isupper Strings.istitle Examples -------- >>> not_empty = ak.array([f'Strings {i}' for i in range(3)]) >>> empty = ak.array(['' for i in range(3)]) >>> strings = ak.concatenate([not_empty, empty]) >>> strings array(['%Strings 0', '%Strings 1', '%Strings 2', '', '', '']) >>> strings.isempty() """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isempty", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def isspace(self) -> pdarray: """ Returns a boolean pdarray where index i indicates whether string i has all whitespace characters (‘ ‘, ‘\t’, ‘\n’, ‘\v’, ‘\f’, ‘\r’). Returns ------- pdarray, bool True for elements that are whitespace, False otherwise Raises ------ RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.islower Strings.isupper Strings.istitle Examples -------- >>> not_space = ak.array([f'Strings {i}' for i in range(3)]) >>> space = ak.array([' ', '\t', '\n', '\v', '\f', '\r', ' \t\n\v\f\r']) >>> strings = ak.concatenate([not_space, space]) >>> strings array(['Strings 0', 'Strings 1', 'Strings 2', ' ', ... 'u0009', 'n', 'u000B', 'u000C', 'u000D', ' u0009nu000Bu000Cu000D']) >>> strings.isspace() array([False False False True True True True True True True]) """ return create_pdarray( generic_msg( cmd="checkChars", args={"subcmd": "isspace", "objType": self.objType, "obj": self.entry} ) )
[docs] @typechecked def strip(self, chars: Optional[Union[bytes, str_scalars]] = "") -> Strings: """ Returns a new Strings object with all leading and trailing occurrences of characters contained in chars removed. The chars argument is a string specifying the set of characters to be removed. If omitted, the chars argument defaults to removing whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped. Parameters ---------- chars the set of characters to be removed Returns ------- Strings Strings object with the leading and trailing characters matching the set of characters in the chars argument removed Raises ------ RuntimeError Raised if there is a server-side error thrown Examples -------- >>> strings = ak.array(['Strings ', ' StringS ', 'StringS ']) >>> s = strings.strip() >>> s array(['Strings', 'StringS', 'StringS']) >>> strings = ak.array(['Strings 1', '1 StringS ', ' 1StringS 12 ']) >>> s = strings.strip(' 12') >>> s array(['Strings', 'StringS', 'StringS']) """ if isinstance(chars, bytes): chars = chars.decode() rep_msg = generic_msg( cmd="segmentedStrip", args={"objType": self.objType, "name": self.entry, "chars": chars} ) return Strings.from_return_msg(cast(str, rep_msg))
[docs] @typechecked def cached_regex_patterns(self) -> List: """ Returns the regex patterns for which Match objects have been cached """ return list(self._regex_dict.keys())
[docs] @typechecked def purge_cached_regex_patterns(self) -> None: """ purges cached regex patterns """ self._regex_dict = dict()
def _empty_pattern_verification(self, pattern): if pattern == "$" or (re.search(pattern, "") and (self == "").any()): # type: ignore # TODO remove once changes from chapel issue #20431 and #20441 are in arkouda raise ValueError( "regex operations not currently supported with a pattern='$' or pattern='' when " "the empty string is contained in Strings" ) def _get_matcher(self, pattern: Union[bytes, str_scalars], create: bool = True): """ internal function to fetch cached Matcher objects """ from arkouda.matcher import Matcher if isinstance(pattern, bytes): pattern = pattern.decode() try: re.compile(pattern) except Exception as e: raise ValueError(e) self._empty_pattern_verification(pattern) matcher = None if pattern in self._regex_dict: matcher = self._regex_dict[pattern] elif create: self._regex_dict[pattern] = Matcher(pattern=pattern, parent_entry_name=self.entry.name) matcher = self._regex_dict[pattern] return matcher
[docs] @typechecked def find_locations(self, pattern: Union[bytes, str_scalars]) -> Tuple[pdarray, pdarray, pdarray]: """ Finds pattern matches and returns pdarrays containing the number, start postitions, and lengths of matches Parameters ---------- pattern: str_scalars The regex pattern used to find matches Returns ------- pdarray, int64 For each original string, the number of pattern matches pdarray, int64 The start positons of pattern matches pdarray, int64 The lengths of pattern matches Raises ------ TypeError Raised if the pattern parameter is not bytes or str_scalars ValueError Raised if pattern is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.findall, Strings.match Examples -------- >>> strings = ak.array([f'{i} string {i}' for i in range(1, 6)]) >>> num_matches, starts, lens = strings.find_locations('\\d') >>> num_matches array([2, 2, 2, 2, 2]) >>> starts array([0, 9, 0, 9, 0, 9, 0, 9, 0, 9]) >>> lens array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])) """ matcher = self._get_matcher(pattern) matcher.find_locations() return matcher.num_matches, matcher.starts, matcher.lengths
[docs] @typechecked def search(self, pattern: Union[bytes, str_scalars]) -> Match: """ Returns a match object with the first location in each element where pattern produces a match. Elements match if any part of the string matches the regular expression pattern Parameters ---------- pattern: str Regex used to find matches Returns ------- Match Match object where elements match if any part of the string matches the regular expression pattern Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.search('_+') <ak.Match object: matched=True, span=(1, 2); matched=True, span=(0, 4); matched=False; matched=True, span=(0, 2); matched=False> """ return self._get_matcher(pattern).get_match(MatchType.SEARCH, self)
[docs] @typechecked def match(self, pattern: Union[bytes, str_scalars]) -> Match: """ Returns a match object where elements match only if the beginning of the string matches the regular expression pattern Parameters ---------- pattern: str Regex used to find matches Returns ------- Match Match object where elements match only if the beginning of the string matches the regular expression pattern Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.match('_+') <ak.Match object: matched=False; matched=True, span=(0, 4); matched=False; matched=True, span=(0, 2); matched=False> """ return self._get_matcher(pattern).get_match(MatchType.MATCH, self)
[docs] @typechecked() def fullmatch(self, pattern: Union[bytes, str_scalars]) -> Match: """ Returns a match object where elements match only if the whole string matches the regular expression pattern Parameters ---------- pattern: str Regex used to find matches Returns ------- Match Match object where elements match only if the whole string matches the regular expression pattern Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.fullmatch('_+') <ak.Match object: matched=False; matched=True, span=(0, 4); matched=False; matched=False; matched=False> """ return self._get_matcher(pattern).get_match(MatchType.FULLMATCH, self)
[docs] @typechecked() def split( self, pattern: Union[bytes, str_scalars], maxsplit: int = 0, return_segments: bool = False ) -> Union[Strings, Tuple]: """ Returns a new Strings split by the occurrences of pattern. If maxsplit is nonzero, at most maxsplit splits occur Parameters ---------- pattern: str Regex used to split strings into substrings maxsplit: int The max number of pattern match occurences in each element to split. The default maxsplit=0 splits on all occurences return_segments: bool If True, return mapping of original strings to first substring in return array. Returns ------- Strings Substrings with pattern matches removed pdarray, int64 (optional) For each original string, the index of first corresponding substring in the return array Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.split('_+', maxsplit=2, return_segments=True) (array(['1', '2', '', '', '', '3', '', '4', '5____6___7', '']), array([0 3 5 6 9])) """ return self._get_matcher(pattern).split(maxsplit, return_segments)
[docs] @typechecked def findall( self, pattern: Union[bytes, str_scalars], return_match_origins: bool = False ) -> Union[Strings, Tuple]: """ Return a new Strings containg all non-overlapping matches of pattern Parameters ---------- pattern: str_scalars Regex used to find matches return_match_origins: bool If True, return a pdarray containing the index of the original string each pattern match is from Returns ------- Strings Strings object containing only pattern matches pdarray, int64 (optional) The index of the original string each pattern match is from Raises ------ TypeError Raised if the pattern parameter is not bytes or str_scalars ValueError Raised if pattern is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.find_locations Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.findall('_+', return_match_origins=True) (array(['_', '___', '____', '__', '___', '____', '___']), array([0 0 1 3 3 3 3])) """ return self._get_matcher(pattern).findall(return_match_origins)
[docs] @typechecked() def sub( self, pattern: Union[bytes, str_scalars], repl: Union[bytes, str_scalars], count: int = 0 ) -> Strings: """ Return new Strings obtained by replacing non-overlapping occurrences of pattern with the replacement repl. If count is nonzero, at most count substitutions occur Parameters ---------- pattern: str_scalars The regex to substitue repl: str_scalars The substring to replace pattern matches with count: int The max number of pattern match occurences in each element to replace. The default count=0 replaces all occurences of pattern with repl Returns ------- Strings Strings with pattern matches replaced Raises ------ TypeError Raised if pattern or repl are not bytes or str_scalars ValueError Raised if pattern is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.subn Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.sub(pattern='_+', repl='-', count=2) array(['1-2-', '-', '3', '-4-5____6___7', '']) """ if isinstance(repl, bytes): repl = repl.decode() return self._get_matcher(pattern).sub(repl, count)
[docs] @typechecked() def subn( self, pattern: Union[bytes, str_scalars], repl: Union[bytes, str_scalars], count: int = 0 ) -> Tuple: """ Perform the same operation as sub(), but return a tuple (new_Strings, number_of_substitions) Parameters ---------- pattern: str_scalars The regex to substitue repl: str_scalars The substring to replace pattern matches with count: int The max number of pattern match occurences in each element to replace. The default count=0 replaces all occurences of pattern with repl Returns ------- Strings Strings with pattern matches replaced pdarray, int64 The number of substitutions made for each element of Strings Raises ------ TypeError Raised if pattern or repl are not bytes or str_scalars ValueError Raised if pattern is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.sub Examples -------- >>> strings = ak.array(['1_2___', '____', '3', '__4___5____6___7', '']) >>> strings.subn(pattern='_+', repl='-', count=2) (array(['1-2-', '-', '3', '-4-5____6___7', '']), array([2 1 0 2 0])) """ if isinstance(repl, bytes): repl = repl.decode() return self._get_matcher(pattern).sub(repl, count, return_num_subs=True)
[docs] @typechecked def contains(self, substr: Union[bytes, str_scalars], regex: bool = False) -> pdarray: """ Check whether each element contains the given substring. Parameters ---------- substr: str_scalars The substring in the form of string or byte array to search for regex: bool Indicates whether substr is a regular expression Note: only handles regular expressions supported by re2 (does not support lookaheads/lookbehinds) Returns ------- pdarray, bool True for elements that contain substr, False otherwise Raises ------ TypeError Raised if the substr parameter is not bytes or str_scalars ValueError Rasied if substr is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.startswith, Strings.endswith Examples -------- >>> strings = ak.array([f'{i} string {i}' for i in range(1, 6)]) >>> strings array(['1 string 1', '2 string 2', '3 string 3', '4 string 4', '5 string 5']) >>> strings.contains('string') array([True, True, True, True, True]) >>> strings.contains('string \\d', regex=True) array([True, True, True, True, True]) """ if isinstance(substr, bytes): substr = substr.decode() if not regex: substr = re.escape(substr) self._empty_pattern_verification(substr) matcher = self._get_matcher(substr, create=False) if matcher is not None: return matcher.get_match(MatchType.SEARCH, self).matched() return create_pdarray( generic_msg( cmd="segmentedSearch", args={"objType": self.objType, "obj": self.entry, "valType": "str", "val": substr}, ) )
[docs] @typechecked def startswith(self, substr: Union[bytes, str_scalars], regex: bool = False) -> pdarray: """ Check whether each element starts with the given substring. Parameters ---------- substr: Union[bytes, str_scalars] The prefix to search for regex: bool Indicates whether substr is a regular expression Note: only handles regular expressions supported by re2 (does not support lookaheads/lookbehinds) Returns ------- pdarray, bool True for elements that start with substr, False otherwise Raises ------ TypeError Raised if the substr parameter is not a bytes ior str_scalars ValueError Rasied if substr is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.contains, Strings.endswith Examples -------- >>> strings_end = ak.array([f'string {i}' for i in range(1, 6)]) >>> strings_end array(['string 1', 'string 2', 'string 3', 'string 4', 'string 5']) >>> strings_end.startswith('string') array([True, True, True, True, True]) >>> strings_start = ak.array([f'{i} string' for i in range(1,6)]) >>> strings_start array(['1 string', '2 string', '3 string', '4 string', '5 string']) >>> strings_start.startswith('\\d str', regex = True) array([True, True, True, True, True]) """ if isinstance(substr, bytes): substr = substr.decode() if not regex: substr = re.escape(substr) self._empty_pattern_verification(substr) matcher = self._get_matcher(substr, create=False) if matcher is not None: return matcher.get_match(MatchType.MATCH, self).matched() else: return self.contains("^" + substr, regex=True)
[docs] @typechecked def endswith(self, substr: Union[bytes, str_scalars], regex: bool = False) -> pdarray: """ Check whether each element ends with the given substring. Parameters ---------- substr: Union[bytes, str_scalars] The suffix to search for regex: bool Indicates whether substr is a regular expression Note: only handles regular expressions supported by re2 (does not support lookaheads/lookbehinds) Returns ------- pdarray, bool True for elements that end with substr, False otherwise Raises ------ TypeError Raised if the substr parameter is not bytes or str_scalars ValueError Rasied if substr is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- Strings.contains, Strings.startswith Examples -------- >>> strings_start = ak.array([f'{i} string' for i in range(1,6)]) >>> strings_start array(['1 string', '2 string', '3 string', '4 string', '5 string']) >>> strings_start.endswith('ing') array([True, True, True, True, True]) >>> strings_end = ak.array([f'string {i}' for i in range(1, 6)]) >>> strings_end array(['string 1', 'string 2', 'string 3', 'string 4', 'string 5']) >>> strings_end.endswith('ing \\d', regex = True) array([True, True, True, True, True]) """ if isinstance(substr, bytes): substr = substr.decode() if not regex: substr = re.escape(substr) self._empty_pattern_verification(substr) return self.contains(substr + "$", regex=True)
[docs] def flatten( self, delimiter: str, return_segments: bool = False, regex: bool = False ) -> Union[Strings, Tuple]: """Unpack delimiter-joined substrings into a flat array. Parameters ---------- delimiter: str Characters used to split strings into substrings return_segments: bool If True, also return mapping of original strings to first substring in return array. regex: bool Indicates whether delimiter is a regular expression Note: only handles regular expressions supported by re2 (does not support lookaheads/lookbehinds) Returns ------- Strings Flattened substrings with delimiters removed pdarray, int64 (optional) For each original string, the index of first corresponding substring in the return array See Also -------- peel, rpeel Examples -------- >>> orig = ak.array(['one|two', 'three|four|five', 'six']) >>> orig.flatten('|') array(['one', 'two', 'three', 'four', 'five', 'six']) >>> flat, map = orig.flatten('|', return_segments=True) >>> map array([0, 2, 5]) >>> under = ak.array(['one_two', 'three_____four____five', 'six']) >>> under_flat, under_map = under.flatten('_+', return_segments=True, regex=True) >>> under_flat array(['one', 'two', 'three', 'four', 'five', 'six']) >>> under_map array([0, 2, 5]) """ if regex: try: re.compile(delimiter) except Exception as e: raise ValueError(e) return self.split(delimiter, return_segments=return_segments) else: cmd = "segmentedFlatten" repMsg = cast( str, generic_msg( cmd=cmd, args={ "values": self.entry, "objtype": self.objType, "return_segs": return_segments, "regex": regex, "delim": delimiter, }, ), ) if return_segments: arrays = repMsg.split("+", maxsplit=2) return Strings.from_return_msg("+".join(arrays[0:2])), create_pdarray(arrays[2]) else: return Strings.from_return_msg(repMsg)
[docs] @typechecked def peel( self, delimiter: Union[bytes, str_scalars], times: int_scalars = 1, includeDelimiter: bool = False, keepPartial: bool = False, fromRight: bool = False, regex: bool = False, ) -> Tuple: """ Peel off one or more delimited fields from each string (similar to string.partition), returning two new arrays of strings. *Warning*: This function is experimental and not guaranteed to work. Parameters ---------- delimiter: Union[bytes, str_scalars] The separator where the split will occur times: Union[int, np.int64] The number of times the delimiter is sought, i.e. skip over the first (times-1) delimiters includeDelimiter: bool If true, append the delimiter to the end of the first return array. By default, it is prepended to the beginning of the second return array. keepPartial: bool If true, a string that does not contain <times> instances of the delimiter will be returned in the first array. By default, such strings are returned in the second array. fromRight: bool If true, peel from the right instead of the left (see also rpeel) regex: bool Indicates whether delimiter is a regular expression Note: only handles regular expressions supported by re2 (does not support lookaheads/lookbehinds) Returns ------- Tuple[Strings, Strings] left: Strings The field(s) peeled from the end of each string (unless fromRight is true) right: Strings The remainder of each string after peeling (unless fromRight is true) Raises ------ TypeError Raised if the delimiter parameter is not byte or str_scalars, if times is not int64, or if includeDelimiter, keepPartial, or fromRight is not bool ValueError Raised if times is < 1 or if delimiter is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- rpeel, stick, lstick Examples -------- >>> s = ak.array(['a.b', 'c.d', 'e.f.g']) >>> s.peel('.') (array(['a', 'c', 'e']), array(['b', 'd', 'f.g'])) >>> s.peel('.', includeDelimiter=True) (array(['a.', 'c.', 'e.']), array(['b', 'd', 'f.g'])) >>> s.peel('.', times=2) (array(['', '', 'e.f']), array(['a.b', 'c.d', 'g'])) >>> s.peel('.', times=2, keepPartial=True) (array(['a.b', 'c.d', 'e.f']), array(['', '', 'g'])) """ if isinstance(delimiter, bytes): delimiter = delimiter.decode() if regex: try: re.compile(delimiter) except Exception as e: raise ValueError(e) if re.search(delimiter, ""): raise ValueError( "peel with a pattern that matches the empty string are not currently supported" ) if times < 1: raise ValueError("times must be >= 1") repMsg = generic_msg( cmd="segmentedPeel", args={ "subcmd": "peel", "objType": self.objType, "obj": self.entry, "valType": "str", "times": NUMBER_FORMAT_STRINGS["int64"].format(times), "id": NUMBER_FORMAT_STRINGS["bool"].format(includeDelimiter), "keepPartial": NUMBER_FORMAT_STRINGS["bool"].format(keepPartial), "lStr": NUMBER_FORMAT_STRINGS["bool"].format(not fromRight), "regex": NUMBER_FORMAT_STRINGS["bool"].format(regex), "delim": delimiter, }, ) arrays = cast(str, repMsg).split("+", maxsplit=3) # first two created are left Strings, last two are right strings left_str = Strings.from_return_msg("+".join(arrays[0:2])) right_str = Strings.from_return_msg("+".join(arrays[2:4])) return left_str, right_str
[docs] def rpeel( self, delimiter: Union[bytes, str_scalars], times: int_scalars = 1, includeDelimiter: bool = False, keepPartial: bool = False, regex: bool = False, ): """ Peel off one or more delimited fields from the end of each string (similar to string.rpartition), returning two new arrays of strings. *Warning*: This function is experimental and not guaranteed to work. Parameters ---------- delimiter: Union[bytes, str_scalars] The separator where the split will occur times: Union[int, np.int64] The number of times the delimiter is sought, i.e. skip over the last (times-1) delimiters includeDelimiter: bool If true, prepend the delimiter to the start of the first return array. By default, it is appended to the end of the second return array. keepPartial: bool If true, a string that does not contain <times> instances of the delimiter will be returned in the second array. By default, such strings are returned in the first array. regex: bool Indicates whether delimiter is a regular expression Note: only handles regular expressions supported by re2 (does not support lookaheads/lookbehinds) Returns ------- Tuple[Strings, Strings] left: Strings The remainder of the string after peeling right: Strings The field(s) that were peeled from the right of each string Raises ------ TypeError Raised if the delimiter parameter is not bytes or str_scalars or if times is not int64 ValueError Raised if times is < 1 or if delimiter is not a valid regex RuntimeError Raised if there is a server-side error thrown See Also -------- peel, stick, lstick Examples -------- >>> s = ak.array(['a.b', 'c.d', 'e.f.g']) >>> s.rpeel('.') (array(['a', 'c', 'e.f']), array(['b', 'd', 'g'])) # Compared against peel >>> s.peel('.') (array(['a', 'c', 'e']), array(['b', 'd', 'f.g'])) """ return self.peel( delimiter, times=times, includeDelimiter=includeDelimiter, keepPartial=keepPartial, fromRight=True, regex=regex, )
[docs] @typechecked def stick( self, other: Strings, delimiter: Union[bytes, str_scalars] = "", toLeft: bool = False ) -> Strings: """ Join the strings from another array onto one end of the strings of this array, optionally inserting a delimiter. *Warning*: This function is experimental and not guaranteed to work. Parameters ---------- other : Strings The strings to join onto self's strings delimiter : str String inserted between self and other toLeft : bool If true, join other strings to the left of self. By default, other is joined to the right of self. Returns ------- Strings The array of joined strings Raises ------ TypeError Raised if the delimiter parameter is not bytes or str_scalars or if the other parameter is not a Strings instance ValueError Raised if times is < 1 RuntimeError Raised if there is a server-side error thrown See Also -------- lstick, peel, rpeel Examples -------- >>> s = ak.array(['a', 'c', 'e']) >>> t = ak.array(['b', 'd', 'f']) >>> s.stick(t, delimiter='.') array(['a.b', 'c.d', 'e.f']) """ if isinstance(delimiter, bytes): delimiter = delimiter.decode() rep_msg = generic_msg( cmd="segmentedBinopvv", args={ "op": "stick", "objType": self.objType, "obj": self.entry, "otherType": other.objType, "other": other.entry, "left": NUMBER_FORMAT_STRINGS["bool"].format(toLeft), "delim": delimiter, }, ) return Strings.from_return_msg(cast(str, rep_msg))
def __add__(self, other: Strings) -> Strings: return self.stick(other)
[docs] def lstick(self, other: Strings, delimiter: Union[bytes, str_scalars] = "") -> Strings: """ Join the strings from another array onto the left of the strings of this array, optionally inserting a delimiter. *Warning*: This function is experimental and not guaranteed to work. Parameters ---------- other : Strings The strings to join onto self's strings delimiter : Union[bytes,str_scalars] String inserted between self and other Returns ------- Strings The array of joined strings, as other + self Raises ------ TypeError Raised if the delimiter parameter is neither bytes nor a str or if the other parameter is not a Strings instance RuntimeError Raised if there is a server-side error thrown See Also -------- stick, peel, rpeel Examples -------- >>> s = ak.array(['a', 'c', 'e']) >>> t = ak.array(['b', 'd', 'f']) >>> s.lstick(t, delimiter='.') array(['b.a', 'd.c', 'f.e']) """ return self.stick(other, delimiter=delimiter, toLeft=True)
def __radd__(self, other: Strings) -> Strings: return self.lstick(other)
[docs] def get_prefixes( self, n: int_scalars, return_origins: bool = True, proper: bool = True ) -> Union[Strings, Tuple[Strings, pdarray]]: """ Return the n-long prefix of each string, where possible Parameters ---------- n : int Length of prefix return_origins : bool If True, return a logical index indicating which strings were long enough to return an n-prefix proper : bool If True, only return proper prefixes, i.e. from strings that are at least n+1 long. If False, allow the entire string to be returned as a prefix. Returns ------- prefixes : Strings The array of n-character prefixes; the number of elements is the number of True values in the returned mask. origin_indices : pdarray, bool Boolean array that is True where the string was long enough to return an n-character prefix, False otherwise. """ repMsg = cast( str, generic_msg( cmd="segmentedSubstring", args={ "objType": self.objType, "name": self, "nChars": n, "returnOrigins": return_origins, "kind": "prefixes", "proper": proper, }, ), ) if return_origins: parts = repMsg.split("+") prefixes = Strings.from_return_msg("+".join(parts[:2])) longenough = create_pdarray(parts[2]) return prefixes, cast(pdarray, longenough) else: return Strings.from_return_msg(repMsg)
[docs] def get_suffixes( self, n: int_scalars, return_origins: bool = True, proper: bool = True ) -> Union[Strings, Tuple[Strings, pdarray]]: """ Return the n-long suffix of each string, where possible Parameters ---------- n : int Length of suffix return_origins : bool If True, return a logical index indicating which strings were long enough to return an n-suffix proper : bool If True, only return proper suffixes, i.e. from strings that are at least n+1 long. If False, allow the entire string to be returned as a suffix. Returns ------- suffixes : Strings The array of n-character suffixes; the number of elements is the number of True values in the returned mask. origin_indices : pdarray, bool Boolean array that is True where the string was long enough to return an n-character suffix, False otherwise. """ repMsg = cast( str, generic_msg( cmd="segmentedSubstring", args={ "objType": self.objType, "name": self, "nChars": n, "returnOrigins": return_origins, "kind": "suffixes", "proper": proper, }, ), ) if return_origins: parts = repMsg.split("+") suffixes = Strings.from_return_msg("+".join(parts[:2])) longenough = create_pdarray(parts[2]) return suffixes, cast(pdarray, longenough) else: return Strings.from_return_msg(repMsg)
[docs] def hash(self) -> Tuple[pdarray, pdarray]: """ Compute a 128-bit hash of each string. Returns ------- Tuple[pdarray,pdarray] A tuple of two int64 pdarrays. The ith hash value is the concatenation of the ith values from each array. Notes ----- The implementation uses SipHash128, a fast and balanced hash function (used by Python for dictionaries and sets). For realistic numbers of strings (up to about 10**15), the probability of a collision between two 128-bit hash values is negligible. """ # TODO fix this to return a single pdarray of hashes repMsg = generic_msg(cmd="segmentedHash", args={"objType": self.objType, "obj": self.entry}) h1, h2 = cast(str, repMsg).split("+") return create_pdarray(h1), create_pdarray(h2)
[docs] def group(self) -> pdarray: """ Return the permutation that groups the array, placing equivalent strings together. All instances of the same string are guaranteed to lie in one contiguous block of the permuted array, but the blocks are not necessarily ordered. Returns ------- pdarray The permutation that groups the array by value See Also -------- GroupBy, unique Notes ----- If the arkouda server is compiled with "-sSegmentedString.useHash=true", then arkouda uses 128-bit hash values to group strings, rather than sorting the strings directly. This method is fast, but the resulting permutation merely groups equivalent strings and does not sort them. If the "useHash" parameter is false, then a full sort is performed. Raises ------ RuntimeError Raised if there is a server-side error in executing group request or creating the pdarray encapsulating the return message """ return create_pdarray( generic_msg(cmd="segmentedGroup", args={"objType": self.objType, "obj": self.entry}) )
def _get_grouping_keys(self) -> List[Strings]: """ Private method for generating grouping keys used by GroupBy. API: this method must be defined by all groupable arrays, and it must return a list of arrays that can be (co)argsorted. """ return [self]
[docs] def to_ndarray(self) -> np.ndarray: """ Convert the array to a np.ndarray, transferring array data from the arkouda server to Python. If the array exceeds a built-in size limit, a RuntimeError is raised. Returns ------- np.ndarray A numpy ndarray with the same strings as this array Notes ----- The number of bytes in the array cannot exceed ``ak.client.maxTransferBytes``, otherwise a ``RuntimeError`` will be raised. This is to protect the user from overflowing the memory of the system on which the Python client is running, under the assumption that the server is running on a distributed system with much more memory than the client. The user may override this limit by setting ak.client.maxTransferBytes to a larger value, but proceed with caution. See Also -------- array() to_list() Examples -------- >>> a = ak.array(["hello", "my", "world"]) >>> a.to_ndarray() array(['hello', 'my', 'world'], dtype='<U5') >>> type(a.to_ndarray()) numpy.ndarray """ # Get offsets and append total bytes for length calculation npoffsets = np.hstack((self._comp_to_ndarray("offsets"), np.array([self.nbytes]))) # Get contents of strings (will error if too large) npvalues = self._comp_to_ndarray("values") # Compute lengths, discounting null terminators lengths = np.diff(npoffsets) - 1 # Numpy dtype is based on max string length dt = f"<U{lengths.max() if len(lengths) > 0 else 1}" res = np.empty(self.size, dtype=dt) # Form a string from each segment and store in numpy array for i, (o, l) in enumerate(zip(npoffsets, lengths)): res[i] = np.str_(codecs.decode(b"".join(npvalues[o : o + l]))) return res
[docs] def to_list(self) -> list: """ Convert the SegString to a list, transferring data from the arkouda server to Python. If the SegString exceeds a built-in size limit, a RuntimeError is raised. Returns ------- list A list with the same strings as this SegString Notes ----- The number of bytes in the array cannot exceed ``ak.client.maxTransferBytes``, otherwise a ``RuntimeError`` will be raised. This is to protect the user from overflowing the memory of the system on which the Python client is running, under the assumption that the server is running on a distributed system with much more memory than the client. The user may override this limit by setting ak.client.maxTransferBytes to a larger value, but proceed with caution. See Also -------- to_ndarray() Examples -------- >>> a = ak.array(["hello", "my", "world"]) >>> a.to_list() ['hello', 'my', 'world'] >>> type(a.to_list()) list """ return self.to_ndarray().tolist()
def _comp_to_ndarray(self, comp: str) -> np.ndarray: """ This is an internal helper function to perform the to_ndarray for one of the string components. Parameters ---------- comp : str The strings component to request Returns ------- np.ndarray A numpy ndarray with the same attributes and data as the pdarray Raises ------ RuntimeError Raised if there is a server-side error thrown, if the pdarray size exceeds the built-in client.maxTransferBytes size limit, or if the bytes received does not match expected number of bytes Notes ----- The number of bytes in the array cannot exceed ``client.maxTransferBytes``, otherwise a ``RuntimeError`` will be raised. This is to protect the user from overflowing the memory of the system on which the Python client is running, under the assumption that the server is running on a distributed system with much more memory than the client. The user may override this limit by setting client.maxTransferBytes to a larger value, but proceed with caution. """ from arkouda.client import maxTransferBytes # Total number of bytes in the array data array_bytes = ( self.size * arkouda.numpy.dtypes.dtype(arkouda.numpy.dtypes.int64).itemsize if comp == "offsets" else self.nbytes * arkouda.numpy.dtypes.dtype(arkouda.numpy.dtypes.uint8).itemsize ) # Guard against overflowing client memory if array_bytes > maxTransferBytes: raise RuntimeError( "Array exceeds allowed size for transfer. Increase ak.client.maxTransferBytes to allow" ) # The reply from the server will be a bytes object rep_msg = generic_msg( cmd=CMD_TO_NDARRAY, args={"obj": self.entry, "comp": comp}, recv_binary=True ) # Make sure the received data has the expected length if len(rep_msg) != array_bytes: raise RuntimeError(f"Expected {array_bytes} bytes but received {len(rep_msg)}") # The server sends us native-endian bytes so we need to account for that. # Since bytes are immutable, we need to copy the np array to be mutable dt: np.dtype = np.dtype(np.int64) if comp == "offsets" else np.dtype(np.uint8) if arkouda.numpy.dtypes.get_server_byteorder() == "big": dt = dt.newbyteorder(">") else: dt = dt.newbyteorder("<") return ( np.frombuffer(rep_msg.encode("utf_8"), dt).copy() if isinstance(rep_msg, str) else np.frombuffer(rep_msg, dt).copy() )
[docs] def astype(self, dtype) -> pdarray: """ Cast values of Strings object to provided dtype Parameters __________ dtype: np.dtype or str Dtype to cast to Returns _______ ak.pdarray An arkouda pdarray with values converted to the specified data type Notes _____ This is essentially shorthand for ak.cast(x, '<dtype>') where x is a pdarray. """ from arkouda.numeric import cast as akcast return akcast(self, dtype)
[docs] def to_parquet( self, prefix_path: str, dataset: str = "strings_array", mode: str = "truncate", compression: Optional[str] = None, ) -> str: """ Save the Strings object to Parquet. The result is a collection of files, one file per locale of the arkouda server, where each filename starts with prefix_path. Each locale saves its chunk of the array to its corresponding file. Parameters ---------- prefix_path : str Directory and filename prefix that all output files share dataset : str Name of the dataset to create in files (must not already exist) mode : str {'truncate' | 'append'} By default, truncate (overwrite) output files, if they exist. If 'append', attempt to create new dataset in existing files. compression : str (Optional) (None | "snappy" | "gzip" | "brotli" | "zstd" | "lz4") Sets the compression type used with Parquet files Returns ------- string message indicating result of save operation Raises ------ RuntimeError Raised if a server-side error is thrown saving the pdarray Notes ----- - The prefix_path must be visible to the arkouda server and the user must have write permission. - Output files have names of the form ``<prefix_path>_LOCALE<i>``, where ``<i>`` ranges from 0 to ``numLocales`` for `file_type='distribute'`. - 'append' write mode is supported, but is not efficient. - If any of the output files already exist and the mode is 'truncate', they will be overwritten. If the mode is 'append' and the number of output files is less than the number of locales or a dataset with the same name already exists, a ``RuntimeError`` will result. - Any file extension can be used.The file I/O does not rely on the extension to determine the file format. """ from arkouda.io import _mode_str_to_int return cast( str, generic_msg( "writeParquet", { "values": self.entry, "dset": dataset, "mode": _mode_str_to_int(mode), "prefix": prefix_path, "objType": "strings", "dtype": self.dtype, "compression": compression, }, ), )
[docs] def to_hdf( self, prefix_path: str, dataset: str = "strings_array", mode: str = "truncate", save_offsets: bool = True, file_type: str = "distribute", ) -> str: """ Save the Strings object to HDF5. The object can be saved to a collection of files or single file. Parameters ---------- prefix_path : str Directory and filename prefix that all output files share dataset : str The name of the Strings dataset to be written, defaults to strings_array mode : str {'truncate' | 'append'} By default, truncate (overwrite) output files, if they exist. If 'append', create a new Strings dataset within existing files. save_offsets : bool Defaults to True which will instruct the server to save the offsets array to HDF5 If False the offsets array will not be save and will be derived from the string values upon load/read. file_type: str ("single" | "distribute") Default: Distribute Distribute the dataset over a file per locale. Single file will save the dataset to one file Returns ------- String message indicating result of save operation Raises ------ RuntimeError Raised if a server-side error is thrown saving the pdarray Notes ----- - Parquet files do not store the segments, only the values. - Strings state is saved as two datasets within an hdf5 group: one for the string characters and one for the segments corresponding to the start of each string - the hdf5 group is named via the dataset parameter. - The prefix_path must be visible to the arkouda server and the user must have write permission. - Output files have names of the form ``<prefix_path>_LOCALE<i>``, where ``<i>`` ranges from 0 to ``numLocales`` for `file_type='distribute'`. Otherwise, the file name will be `prefix_path`. - If any of the output files already exist and the mode is 'truncate', they will be overwritten. If the mode is 'append' and the number of output files is less than the number of locales or a dataset with the same name already exists, a ``RuntimeError`` will result. - Any file extension can be used.The file I/O does not rely on the extension to determine the file format. See Also --------- to_hdf """ from arkouda.io import _file_type_to_int, _mode_str_to_int return cast( str, generic_msg( "tohdf", { "values": self.entry, "dset": dataset, "write_mode": _mode_str_to_int(mode), "filename": prefix_path, "dtype": self.dtype, "save_offsets": save_offsets, "objType": "strings", "file_format": _file_type_to_int(file_type), }, ), )
[docs] def update_hdf( self, prefix_path: str, dataset: str = "strings_array", save_offsets: bool = True, repack: bool = True, ): """ Overwrite the dataset with the name provided with this Strings object. If the dataset does not exist it is added Parameters ----------- prefix_path : str Directory and filename prefix that all output files share dataset : str Name of the dataset to create in files save_offsets : bool Defaults to True which will instruct the server to save the offsets array to HDF5 If False the offsets array will not be save and will be derived from the string values upon load/read. repack: bool Default: True HDF5 does not release memory on delete. When True, the inaccessible data (that was overwritten) is removed. When False, the data remains, but is inaccessible. Setting to false will yield better performance, but will cause file sizes to expand. Returns -------- str - success message if successful Raises ------- RuntimeError Raised if a server-side error is thrown saving the Strings object Notes ------ - If file does not contain File_Format attribute to indicate how it was saved, the file name is checked for _LOCALE#### to determine if it is distributed. - If the dataset provided does not exist, it will be added """ from arkouda.io import ( _file_type_to_int, _get_hdf_filetype, _mode_str_to_int, _repack_hdf, ) # determine the format (single/distribute) that the file was saved in file_type = _get_hdf_filetype(prefix_path + "*") generic_msg( cmd="tohdf", args={ "values": self, "dset": dataset, "write_mode": _mode_str_to_int("append"), "filename": prefix_path, "dtype": self.dtype, "save_offsets": save_offsets, "objType": "strings", "file_format": _file_type_to_int(file_type), "overwrite": True, }, ) if repack: _repack_hdf(prefix_path)
[docs] @typechecked def to_csv( self, prefix_path: str, dataset: str = "strings_array", col_delim: str = ",", overwrite: bool = False, ): """ Write Strings to CSV file(s). File will contain a single column with the Strings data. All CSV Files written by Arkouda include a header denoting data types of the columns. Unlike other file formats, CSV files store Strings as their UTF-8 format instead of storing bytes as uint(8). Parameters ----------- prefix_path: str The filename prefix to be used for saving files. Files will have _LOCALE#### appended when they are written to disk. dataset: str Column name to save the Strings under. Defaults to "strings_array". col_delim: str Defaults to ",". Value to be used to separate columns within the file. Please be sure that the value used DOES NOT appear in your dataset. overwrite: bool Defaults to False. If True, any existing files matching your provided prefix_path will be overwritten. If False, an error will be returned if existing files are found. Returns -------- str reponse message Raises ------ ValueError Raised if all datasets are not present in all parquet files or if one or more of the specified files do not exist RuntimeError Raised if one or more of the specified files cannot be opened. If `allow_errors` is true this may be raised if no values are returned from the server. TypeError Raised if we receive an unknown arkouda_type returned from the server Notes ------ - CSV format is not currently supported by load/load_all operations - The column delimiter is expected to be the same for column names and data - Be sure that column delimiters are not found within your data. - All CSV files must delimit rows using newline (``\\n``) at this time. """ return cast( str, generic_msg( cmd="writecsv", args={ "datasets": [self], "col_names": [dataset], "filename": prefix_path, "num_dsets": 1, "col_delim": col_delim, "dtypes": [self.dtype.name], "row_count": self.size, "overwrite": overwrite, }, ), )
[docs] @typechecked def save( self, prefix_path: str, dataset: str = "strings_array", mode: str = "truncate", save_offsets: bool = True, compression: Optional[str] = None, file_format: str = "HDF5", file_type: str = "distribute", ) -> str: """ DEPRECATED Save the Strings object to HDF5 or Parquet. The result is a collection of files, one file per locale of the arkouda server, where each filename starts with prefix_path. HDF5 support single files, in which case the file name will only be that provided. Each locale saves its chunk of the array to its corresponding file. Parameters ---------- prefix_path : str Directory and filename prefix that all output files share dataset : str The name of the Strings dataset to be written, defaults to strings_array mode : str {'truncate' | 'append'} By default, truncate (overwrite) output files, if they exist. If 'append', create a new Strings dataset within existing files. save_offsets : bool Defaults to True which will instruct the server to save the offsets array to HDF5 If False the offsets array will not be save and will be derived from the string values upon load/read. This is not supported for Parquet files. compression : str (Optional) (None | "snappy" | "gzip" | "brotli" | "zstd" | "lz4") Sets the compression type used with Parquet files file_format : str By default, saved files will be written to the HDF5 file format. If 'Parquet', the files will be written to the Parquet file format. This is case insensitive. file_type: str ("single" | "distribute") Default: Distribute Distribute the dataset over a file per locale. Single file will save the dataset to one file Returns ------- String message indicating result of save operation Notes ----- Important implementation notes: (1) Strings state is saved as two datasets within an hdf5 group: one for the string characters and one for the segments corresponding to the start of each string, (2) the hdf5 group is named via the dataset parameter. (3) Parquet files do not store the segments, only the values. """ from warnings import warn warn( "ak.Strings.save has been deprecated. Please use ak.Strings.to_hdf or ak.Strings.to_parquet", DeprecationWarning, ) if mode.lower() not in ["append", "truncate"]: raise ValueError("Allowed modes are 'truncate' and 'append'") if file_format.lower() == "hdf5": return self.to_hdf( prefix_path, dataset=dataset, mode=mode, save_offsets=save_offsets, file_type=file_type ) elif file_format.lower() == "parquet": return self.to_parquet(prefix_path, dataset=dataset, mode=mode, compression=compression) else: raise ValueError("Valid file types are HDF5 or Parquet")
def _list_component_names(self) -> List[str]: """ Internal Function that returns a list of all component names Parameters ---------- None Returns ------- List[str] List of all component names """ return list(itertools.chain.from_iterable([self.entry._list_component_names()]))
[docs] def info(self) -> str: """ Returns a JSON formatted string containing information about all components of self Parameters ---------- None Returns ------- str JSON string containing information about all components of self """ return information(self._list_component_names())
[docs] def pretty_print_info(self) -> None: """ Prints information about all components of self in a human readable format Parameters ---------- None Returns ------- None """ self.entry.pretty_print_info()
[docs] @typechecked def register(self, user_defined_name: str) -> Strings: """ Register this Strings object with a user defined name in the arkouda server so it can be attached to later using Strings.attach() This is an in-place operation, registering a Strings object more than once will update the name in the registry and remove the previously registered name. A name can only be registered to one object at a time. Parameters ---------- user_defined_name : str user defined name which the Strings object is to be registered under Returns ------- Strings The same Strings object which is now registered with the arkouda server and has an updated name. This is an in-place modification, the original is returned to support a fluid programming style. Please note you cannot register two different objects with the same name. Raises ------ TypeError Raised if user_defined_name is not a str RegistrationError If the server was unable to register the Strings object with the user_defined_name If the user is attempting to register more than one object with the same name, the former should be unregistered first to free up the registration name. See also -------- attach, unregister Notes ----- Registered names/Strings objects in the server are immune to deletion until they are unregistered. """ if self.registered_name is not None and self.is_registered(): raise RegistrationError(f"This object is already registered as {self.registered_name}") generic_msg( cmd="register", args={ "name": user_defined_name, "objType": self.objType, "array": self.name, }, ) self.registered_name = user_defined_name return self
[docs] def unregister(self) -> None: """ Unregister a Strings object in the arkouda server which was previously registered using register() and/or attached to using attach() Parameters ---------- Returns ------- None Raises ------ RuntimeError Raised if the server could not find the internal name/symbol to remove See also -------- register, attach Notes ----- Registered names/Strings objects in the server are immune to deletion until they are unregistered. """ from arkouda.util import unregister if not self.registered_name: raise RegistrationError("This object is not registered") unregister(self.registered_name) self.registered_name = None
[docs] def is_registered(self) -> np.bool_: """ Return True iff the object is contained in the registry Parameters ---------- None Returns ------- bool Indicates if the object is contained in the registry Raises ------ RuntimeError Raised if there's a server-side error thrown """ from arkouda.util import is_registered if self.registered_name is None: return np.bool_(is_registered(self.name, as_component=True)) else: return np.bool_(is_registered(self.registered_name))
[docs] @staticmethod @typechecked def attach(user_defined_name: str) -> Strings: """ class method to return a Strings object attached to the registered name in the arkouda server which was registered using register() Parameters ---------- user_defined_name : str user defined name which the Strings object was registered under Returns ------- Strings object the Strings object registered with user_defined_name in the arkouda server Raises ------ TypeError Raised if user_defined_name is not a str See also -------- register, unregister Notes ----- Registered names/Strings objects in the server are immune to deletion until they are unregistered. """ import warnings from arkouda.util import attach warnings.warn( "ak.Strings.attach() is deprecated. Please use ak.attach() instead.", DeprecationWarning, ) return attach(user_defined_name)
[docs] @staticmethod @typechecked def unregister_strings_by_name(user_defined_name: str) -> None: """ Unregister a Strings object in the arkouda server previously registered via register() Parameters ---------- user_defined_name : str The registered name of the Strings object See also -------- register, unregister, attach, is_registered """ import warnings from arkouda.util import unregister warnings.warn( "ak.Strings.unregister_segarray_by_name() is deprecated. " "Please use ak.unregister() instead.", DeprecationWarning, ) return unregister(user_defined_name)
[docs] def transfer(self, hostname: str, port: int_scalars): """ Sends a Strings object to a different Arkouda server Parameters ---------- hostname : str The hostname where the Arkouda server intended to receive the Strings object is running. port : int_scalars The port to send the array over. This needs to be an open port (i.e., not one that the Arkouda server is running on). This will open up `numLocales` ports, each of which in succession, so will use ports of the range {port..(port+numLocales)} (e.g., running an Arkouda server of 4 nodes, port 1234 is passed as `port`, Arkouda will use ports 1234, 1235, 1236, and 1237 to send the array data). This port much match the port passed to the call to `ak.receive_array()`. Returns ------- A message indicating a complete transfer Raises ------ ValueError Raised if the op is not within the pdarray.BinOps set TypeError Raised if other is not a pdarray or the pdarray.dtype is not a supported dtype """ # hostname is the hostname to send to return generic_msg( cmd="sendArray", args={"values": self.entry, "hostname": hostname, "port": port, "objType": "strings"}, )