Source code for arkouda.array_api.linalg

from .array_object import Array

from arkouda.client import generic_msg
from arkouda.pdarrayclass import create_pdarray, broadcast_if_needed


[docs] def matmul(x1: Array, x2: Array, /) -> Array: """ Matrix product of two arrays. """ from .array_object import Array if x1._array.ndim < 2 and x2._array.ndim < 2: raise ValueError( "matmul requires at least one array argument to have more than two dimensions" ) x1b, x2b, tmp_x1, tmp_x2 = broadcast_if_needed(x1._array, x2._array) repMsg = generic_msg( cmd=f"matMul{len(x1b.shape)}D", args={ "x1": x1b.name, "x2": x2b.name, }, ) if tmp_x1: del x1b if tmp_x2: del x2b return Array._new(create_pdarray(repMsg))
[docs] def tensordot(): """ WARNING: not yet implemented """ raise ValueError("tensordot not implemented")
[docs] def matrix_transpose(x: Array) -> Array: """ Matrix product of two arrays. """ from .array_object import Array if x._array.ndim < 2: raise ValueError( "matrix_transpose requires the array to have more than two dimensions" ) repMsg = generic_msg( cmd=f"transpose{x._array.ndim}D", args={ "array": x._array.name, }, ) return Array._new(create_pdarray(repMsg))
[docs] def vecdot(x1: Array, x2: Array, /, *, axis: int = -1) -> Array: from .array_object import Array x1b, x2b, tmp_x1, tmp_x2 = broadcast_if_needed(x1._array, x2._array) repMsg = generic_msg( cmd=f"vecdot{len(x1b.shape)}D", args={ "x1": x1b.name, "x2": x2b.name, "bcShape": x1b.shape, "axis": axis, }, ) if tmp_x1: del x1b if tmp_x2: del x2b return Array._new(create_pdarray(repMsg))