Source code for arkouda.array_api.creation_functions

from __future__ import annotations

from typing import TYPE_CHECKING, List, Optional, Tuple, Union, cast

from arkouda.client import generic_msg
import numpy as np
from arkouda.pdarrayclass import create_pdarray, pdarray, _to_pdarray
from arkouda.pdarraycreation import scalar_array
from arkouda.numpy.dtypes import dtype as akdtype
from arkouda.numpy.dtypes import resolve_scalar_dtype

if TYPE_CHECKING:
    from ._typing import (
        Array,
        Device,
        Dtype,
        NestedSequence,
        SupportsBufferProtocol,
    )
import arkouda as ak


[docs] def asarray( obj: Union[ Array, bool, int, float, NestedSequence[bool | int | float], SupportsBufferProtocol, ak.pdarray, np.ndarray, ], /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, copy: Optional[bool] = None, ) -> Array: """ Create a new Array from one of: - another Array - a scalar value (bool, int, float) - a sequence of scalar values (not yet implemented) - a buffer (not yet implemented) - an arkouda :class:`~arkouda.pdarrayclass.pdarray` - a numpy ndarray Parameters ---------- obj: The object to convert to an Array dtype: Optional[Dtype] The dtype of the resulting Array. If None, the dtype is inferred from the input object device: Optional[Device] The device on which to create the Array (not yet implemented) copy: Optional[bool] Whether to copy the input object (not yet implemented) """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") if isinstance(obj, ak.pdarray): return Array._new(obj) elif ( isinstance(obj, bool) or isinstance(obj, int) or isinstance(obj, float) or isinstance(obj, complex) ): if dtype is None: xdtype = akdtype(resolve_scalar_dtype(obj)) else: xdtype = akdtype(dtype) res = ak.full(1, obj, xdtype) return Array._new(res) elif isinstance(obj, Array): return Array._new(ak.array(obj._array)) elif isinstance(obj, ak.pdarray): return Array._new(obj) elif isinstance(obj, np.ndarray): return Array._new(_to_pdarray(obj, dt=dtype)) else: raise ValueError( "asarray not implemented for 'NestedSequence' or 'SupportsBufferProtocol'" )
[docs] def arange( start: Union[int, float], /, stop: Optional[Union[int, float]] = None, step: Union[int, float] = 1, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a 1D of array of evenly spaced values within the half-open interval [start, stop) Parameters ---------- start: Union[int, float] If `stop` is None, this is the stop value and start is 0. Otherwise, this is the start value (inclusive). stop: Optional[Union[int, float]] The end value of the sequence (exclusive). step: Union[int, float] Spacing between values (default is 1). dtype: Optional[Dtype] The data type of the output array. If None, use float64. """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") if stop is None: return Array._new(ak.arange(0, start, step, dtype=dtype)) else: return Array._new(ak.arange(start, stop, step, dtype=dtype))
[docs] def empty( shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a new array of given shape and type, without initializing entries. """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") if isinstance(shape, tuple): size = 1 tshape = cast(Tuple, shape) for s in tshape: size *= s return Array._new( pdarray("__empty__", akdtype(dtype), size, len(tshape), tshape, 0, None), empty=True, ) else: vshape = cast(int, shape) return Array._new( pdarray("__empty__", akdtype(dtype), vshape, 1, (vshape,), 0, None), empty=True, )
[docs] def empty_like( x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None ) -> Array: """ Return a new array whose shape and dtype match the input array, without initializing entries. """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") t = x.dtype if dtype is None else akdtype(dtype) return Array._new( pdarray( "__empty__", t, x._array.size, x._array.ndim, x._array.shape, x._array.itemsize, x._array.max_bits, ), empty=True, )
[docs] def eye( n_rows: int, n_cols: Optional[int] = None, /, *, k: int = 0, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a 2D array with ones on the diagonal and zeros elsewhere. Parameters ---------- n_rows: int Number of rows in the output. n_cols: Optional[int] Number of columns in the output. If None, defaults to `n_rows`. k: int Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype: Optional[Dtype] Data type of the returned array. If None, use float64. """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") cols = n_rows if n_cols is not None: cols = n_cols repMsg = generic_msg( cmd="eye", args={ "dtype": np.dtype(dtype).name, "rows": n_rows, "cols": cols, "diag": k, }, ) return Array._new(create_pdarray(repMsg))
[docs] def from_dlpack(x: object, /) -> Array: """ Construct an Array from a DLPack tensor. WARNING: This function is not yet implemented. """ raise ValueError("Not implemented")
[docs] def full( shape: Union[int, Tuple[int, ...]], fill_value: Union[int, bool, float], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a new array of given shape and type, filled with `fill_value`. """ a = zeros(shape, dtype=dtype, device=device) a._array.fill(fill_value) return a
[docs] def full_like( x: Array, /, fill_value: Union[int, float], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a new array whose shape and dtype match the input array, filled with `fill_value`. """ return full(x.shape, fill_value, dtype=dtype, device=device)
[docs] def linspace( start: Union[int, float], stop: Union[int, float], /, num: int, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, endpoint: bool = True, ) -> Array: """ An Array API compliant wrapper for :func:`arkouda.linspace`. """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") return Array._new(ak.linspace(start, stop, num))
[docs] def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]: """ Return coordinate matrices from coordinate vectors. WARNING: This function is not yet implemented. """ raise ValueError("Not implemented")
[docs] def ones( shape: Union[int, Tuple[int, ...]], *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a new array with the specified shape and type, filled with ones. """ a = zeros(shape, dtype=dtype, device=device) a._array.fill(1) return a
[docs] def ones_like( x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None ) -> Array: """ Return a new array whose shape and dtype match the input array, filled with ones. """ return ones(x.shape, dtype=dtype, device=device)
[docs] def tril(x: Array, /, *, k: int = 0) -> Array: """ Create a new array with the values from `x` below the `k`-th diagonal, and all other elements zero. """ from .array_object import Array repMsg = generic_msg( cmd=f"tril{x._array.ndim}D", args={ "array": x._array.name, "diag": k, }, ) return Array._new(create_pdarray(repMsg))
[docs] def triu(x: Array, /, *, k: int = 0) -> Array: """ Create a new array with the values from `x` above the `k`-th diagonal, and all other elements zero. """ from .array_object import Array repMsg = generic_msg( cmd=f"triu{x._array.ndim}D", args={ "array": x._array.name, "diag": k, }, ) return Array._new(create_pdarray(repMsg))
[docs] def zeros( shape: Union[int, Tuple[int, ...]], /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None, ) -> Array: """ Return a new array with the specified shape and type, filled with zeros. """ from .array_object import Array if device not in ["cpu", None]: raise ValueError(f"Unsupported device {device!r}") if isinstance(shape, tuple): if shape == (): return Array._new(scalar_array(0, dtype=dtype)) else: ndim = len(shape) else: if shape == 0: return Array._new(scalar_array(0, dtype=dtype)) else: ndim = 1 dtype = akdtype(dtype) # normalize dtype dtype_name = cast(np.dtype, dtype).name repMsg = generic_msg( cmd=f"create<{dtype_name},{ndim}>", args={"shape": shape}, ) return Array._new(create_pdarray(repMsg))
[docs] def zeros_like( x: Array, /, *, dtype: Optional[Dtype] = None, device: Optional[Device] = None ) -> Array: """ Return a new array whose shape and dtype match the input array, filled with zeros. """ return zeros(x.shape, dtype=dtype, device=device)