Source code for arkouda.alignment

import functools
from typing import Sequence
from warnings import warn

import numpy as np

from arkouda.categorical import Categorical
from arkouda.client import generic_msg
from arkouda.numpy.dtypes import bigint
from arkouda.numpy.dtypes import float64 as akfloat64
from arkouda.numpy.dtypes import int64 as akint64
from arkouda.numpy.dtypes import uint64 as akuint64
from arkouda.groupbyclass import GroupBy, broadcast, unique
from arkouda.numeric import cumsum, where
from arkouda.pdarrayclass import create_pdarray, pdarray
from arkouda.pdarraycreation import arange, full, ones, zeros
from arkouda.pdarraysetops import concatenate, in1d
from arkouda.sorting import argsort, coargsort
from arkouda.strings import Strings


[docs] def unsqueeze(p): if isinstance(p, pdarray) or isinstance(p, Strings) or isinstance(p, Categorical): return [p] else: return p
[docs] def zero_up(vals): """ Map an array of sparse values to 0-up indices. Parameters ---------- vals : pdarray Array to map to dense index Returns ------- aligned : pdarray Array with values replaced by 0-up indices """ g = GroupBy(vals) unique_size = g.unique_keys.size if not isinstance(vals, Sequence) else g.unique_keys[0].size uniqueInds = arange(unique_size) idinds = g.broadcast(uniqueInds, permute=True) return idinds
[docs] def align(*args): """ Map multiple arrays of sparse identifiers to a common 0-up index. Parameters ---------- *args : pdarrays or sequences of pdarrays Arrays to map to dense index Returns ------- aligned : list of pdarrays Arrays with values replaced by 0-up indices """ if not any(isinstance(arg, Sequence) for arg in args): key = concatenate([full(arg.size, i, akint64) for i, arg in enumerate(args)], ordered=False) inds = zero_up(concatenate(args, ordered=False)) else: if not all(isinstance(arg, Sequence) for arg in args): raise TypeError("If any of the arguments are a sequence of pdarray, they all have to be") key = concatenate([full(arg[0].size, i, akint64) for i, arg in enumerate(args)], ordered=False) inds = zero_up([concatenate(x, ordered=False) for x in zip(*args)]) return [inds[key == i] for i in range(len(args))]
[docs] def right_align(left, right): """ Map two arrays of sparse values to the 0-up index set implied by the right array, discarding values from left that do not appear in right. Parameters ---------- left : pdarray or a sequence of pdarrays Left-hand identifiers right : pdarray or a sequence of pdarrays Right-hand identifiers that define the index Returns ------- keep : pdarray, bool Logical index of left-hand values that survived aligned : (pdarray, pdarray) Left and right arrays with values replaced by 0-up indices """ is_sequence = isinstance(left, Sequence) and isinstance(right, Sequence) uright = unique(right) keep = in1d(left, uright) fleft = left[keep] if not is_sequence else [lf[keep] for lf in left] return keep, align(fleft, right)
[docs] def left_align(left, right): """ Map two arrays of sparse identifiers to the 0-up index set implied by the left array, discarding values from right that do not appear in left. """ return right_align(right, left)
[docs] class NonUniqueError(ValueError): pass
[docs] def find(query, space, all_occurrences=False, remove_missing=False): """ Return indices of query items in a search list of items. Parameters ---------- query : (sequence of) array-like The items to search for. If multiple arrays, each "row" is an item. space : (sequence of) array-like The set of items in which to search. Must have same shape/dtype as query. all_occurrences: bool When duplicate terms are present in search space, if all_occurrences is True, return all occurrences found as a SegArray, otherwise return only the first occurrences as a pdarray. Defaults to only finding the first occurrence. Finding all occurrences is not yet supported on sequences of arrays remove_missing: bool If all_occurrences is True, remove_missing is automatically enabled. If False, return -1 for any items in query not found in space. If True, remove these and only return indices of items that are found. Returns ------- indices : pdarray or SegArray For each item in query, its index in space. If all_occurrences is False, the return will be a pdarray of the first index where each value in the query appears in the space. If all_occurrences is True, the return will be a SegArray containing every index where each value in the query appears in the space. If all_occurrences is True, remove_missing is automatically enabled. If remove_missing is True, exclude missing values, otherwise return -1. Examples -------- >>> select_from = ak.arange(10) >>> arr1 = select_from[ak.randint(0, select_from.size, 20, seed=10)] >>> arr2 = select_from[ak.randint(0, select_from.size, 20, seed=11)] # remove some values to ensure we have some values # which don't appear in the search space >>> arr2 = arr2[arr2 != 9] >>> arr2 = arr2[arr2 != 3] # find with defaults (all_occurrences and remove_missing both False) >>> ak.find(arr1, arr2) array([-1 -1 -1 0 1 -1 -1 -1 2 -1 5 -1 8 -1 5 -1 -1 11 5 0]) # set remove_missing to True, only difference from default # is missing values are excluded >>> ak.find(arr1, arr2, remove_missing=True) array([0 1 2 5 8 5 11 5 0]) # set both remove_missing and all_occurrences to True, missing values # will be empty segments >>> ak.find(arr1, arr2, remove_missing=True, all_occurrences=True).to_list() [[], [], [], [0, 4], [1, 3, 10], [], [], [], [2, 6, 12, 13], [], [5, 7], [], [8, 9, 14], [], [5, 7], [], [], [11, 15], [5, 7], [0, 4]] """ # Concatenate the space and query in fast (block interleaved) mode if isinstance(query, (pdarray, Strings, Categorical)): if type(query) is not type(space): raise TypeError("Arguments must have same type") c = concatenate((space, query), ordered=False) spacesize = space.size querysize = query.size else: if len(query) != len(space): raise TypeError("Multi-array arguments must have same number of arrays") spacesize = {s.size for s in space} querysize = {q.size for q in query} if len(spacesize) != 1 or len(querysize) != 1: raise TypeError("Multi-array arguments must be non-empty and have equal-length arrays") spacesize = spacesize.pop() querysize = querysize.pop() atypes = np.array([ai.dtype for ai in query]) btypes = np.array([bi.dtype for bi in space]) if not (atypes == btypes).all(): raise TypeError("Array dtypes of arguments must match") c = [concatenate((si, qi), ordered=False) for si, qi in zip(space, query)] # Combined index of space and query elements, in block interleaved order # All space indices are less than all query indices i = concatenate((arange(spacesize), arange(spacesize, spacesize + querysize)), ordered=False) # Group on terms g = GroupBy(c, dropna=False) # For each term, count how many times it appears in the search space # since we reuse (i < spacesize)[g.permutation] later, we call sum aggregation manually less_than = (i < spacesize)[g.permutation] repMsg = generic_msg( cmd="segmentedReduction", args={ "values": less_than, "segments": g.segments, "op": "sum", "skip_nan": True, "ddof": 1, }, ) space_multiplicity = create_pdarray(repMsg) has_duplicates = (space_multiplicity > 1).any() # handle duplicate terms in space if has_duplicates: if all_occurrences: if isinstance(query, Sequence): raise TypeError("finding all_occurrences is not yet supported on sequences of arrays") from arkouda.segarray import SegArray # create a segarray which contains all the indices from query # in our search space, instead of just the min for each segment # im not completely convinced there's not a better way to get this given the # amount of structure but this is not the bottleneck of the computation anymore min_k_vals = i[g.permutation][less_than] seg_idx = g.broadcast(arange(g.segments.size))[i >= spacesize] min_k_segs = cumsum(space_multiplicity) - space_multiplicity sa = SegArray(min_k_segs, min_k_vals) return sa[seg_idx] else: warn( "Duplicate terms present in search space. Only first instance of each query term" " will be reported. To return all occurrences, set all_occurrences=True." ) # For query terms in the space, the min combined index will be the first index of that # term in the space uspaceidx = g.min(i)[1] # For query terms not in the space, the min combined index will exceed the space size # and should be set to -1 uspaceidx = where(uspaceidx >= spacesize, -1, uspaceidx) # Broadcast unique term indices to combined list of space and query terms spaceidx = g.broadcast(uspaceidx) # Return only the indices of the query terms (remove the search space) pda = spaceidx[i >= spacesize] return pda[pda != -1] if remove_missing else pda
[docs] def lookup(keys, values, arguments, fillvalue=-1): """ Apply the function defined by the mapping keys --> values to arguments. Parameters ---------- keys : (sequence of) array-like The domain of the function. Entries must be unique (if a sequence of arrays is given, each row is treated as a tuple-valued entry). values : pdarray The range of the function. Must be same length as keys. arguments : (sequence of) array-like The arguments on which to evaluate the function. Must have same dtype (or tuple of dtypes, for a sequence) as keys. fillvalue : scalar The default value to return for arguments not in keys. Returns ------- evaluated : pdarray The result of evaluating the function over arguments. Notes ----- While the values cannot be Strings (or other complex objects), the same result can be achieved by passing an arange as the values, then using the return as indices into the desired object. Examples -------- # Lookup numbers by two-word name >>> keys1 = ak.array(['twenty' for _ in range(5)]) >>> keys2 = ak.array(['one', 'two', 'three', 'four', 'five']) >>> values = ak.array([21, 22, 23, 24, 25]) >>> args1 = ak.array(['twenty', 'thirty', 'twenty']) >>> args2 = ak.array(['four', 'two', 'two']) >>> aku.lookup([keys1, keys2], values, [args1, args2]) array([24, -1, 22]) # Other direction requires an intermediate index >>> revkeys = values >>> revindices = ak.arange(values.size) >>> revargs = ak.array([24, 21, 22]) >>> idx = aku.lookup(revkeys, revindices, revargs) >>> keys1[idx], keys2[idx] (array(['twenty', 'twenty', 'twenty']), array(['four', 'one', 'two'])) """ if isinstance(values, Categorical): codes = lookup(keys, values.codes, arguments, fillvalue=values._NAcode) return Categorical.from_codes(codes, values.categories, NAvalue=values.NAvalue) # Find arguments in keys array idx = find(arguments, keys) # Initialize return values with fillvalue for missing values retvals = full(idx.size, fillvalue, dtype=values.dtype) # Where arguments were found in keys, put corresponding fuction values found = idx >= 0 retvals[found] = values[idx[found]] return retvals
[docs] def in1d_intervals(vals, intervals, symmetric=False): """ Test each value for membership in *any* of a set of half-open (pythonic) intervals. Parameters ---------- vals : pdarray(int, float) Values to test for membership in intervals intervals : 2-tuple of pdarrays Non-overlapping, half-open intervals, as a tuple of (lower_bounds_inclusive, upper_bounds_exclusive) symmetric : bool If True, also return boolean pdarray indicating which intervals contained one or more query values. Returns ------- pdarray(bool) Array of same length as <vals>, True if corresponding value is included in any of the ranges defined by (low[i], high[i]) inclusive. pdarray(bool) (if symmetric=True) Array of same length as number of intervals, True if corresponding interval contains any of the values in <vals>. Notes ----- First return array is equivalent to the following: ((vals >= intervals[0][0]) & (vals < intervals[1][0])) | ((vals >= intervals[0][1]) & (vals < intervals[1][1])) | ... ((vals >= intervals[0][-1]) & (vals < intervals[1][-1])) But much faster when testing many ranges. Second (optional) return array is equivalent to: ((intervals[0] <= vals[0]) & (intervals[1] > vals[0])) | ((intervals[0] <= vals[1]) & (intervals[1] > vals[1])) | ... ((intervals[0] <= vals[-1]) & (intervals[1] > vals[-1])) But much faster when vals is non-trivial size. """ idx = search_intervals(vals, intervals) found = idx > -1 if symmetric: containresult = in1d(arange(intervals[0].size), idx) return found, containresult else: return found
[docs] def search_intervals(vals, intervals, tiebreak=None, hierarchical=True): """ Given an array of query vals and non-overlapping, closed intervals, return the index of the best (see tiebreak) interval containing each query value, or -1 if not present in any interval. Parameters ---------- vals : (sequence of) pdarray(int, uint, float) Values to search for in intervals. If multiple arrays, each "row" is an item. intervals : 2-tuple of (sequences of) pdarrays Non-overlapping, half-open intervals, as a tuple of (lower_bounds_inclusive, upper_bounds_exclusive) Must have same dtype(s) as vals. tiebreak : (optional) pdarray, numeric When a value is present in more than one interval, the interval with the lowest tiebreak value will be chosen. If no tiebreak is given, the first containing interval will be chosen. hierarchical: boolean When True, sequences of pdarrays will be treated as components specifying a single dimension (i.e. hierarchical) When False, sequences of pdarrays will be specifying multi-dimensional intervals Returns ------- idx : pdarray(int64) Index of interval containing each query value, or -1 if not found Notes ----- The return idx satisfies the following condition: present = idx > -1 ((intervals[0][idx[present]] <= vals[present]) & (intervals[1][idx[present]] >= vals[present])).all() Examples -------- >>> starts = (ak.array([0, 5]), ak.array([0, 11])) >>> ends = (ak.array([5, 9]), ak.array([10, 20])) >>> vals = (ak.array([0, 0, 2, 5, 5, 6, 6, 9]), ak.array([0, 20, 1, 5, 15, 0, 12, 30])) >>> ak.search_intervals(vals, (starts, ends), hierarchical=False) array([0 -1 0 0 1 -1 1 -1]) >>> ak.search_intervals(vals, (starts, ends)) array([0 0 0 0 1 1 1 -1]) >>> bi_starts = ak.bigint_from_uint_arrays([ak.cast(a, ak.uint64) for a in starts]) >>> bi_ends = ak.bigint_from_uint_arrays([ak.cast(a, ak.uint64) for a in ends]) >>> bi_vals = ak.bigint_from_uint_arrays([ak.cast(a, ak.uint64) for a in vals]) >>> bi_starts, bi_ends, bi_vals (array(["0" "92233720368547758091"]), array(["92233720368547758090" "166020696663385964564"]), array(["0" "20" "36893488147419103233" "92233720368547758085" "92233720368547758095" "110680464442257309696" "110680464442257309708" "166020696663385964574"])) >>> ak.search_intervals(bi_vals, (bi_starts, bi_ends)) array([0 0 0 0 1 1 1 -1]) """ from arkouda.join import gen_ranges if len(intervals) != 2: raise ValueError("intervals must be 2-tuple of (lower_bound_inclusive, upper_bounds_inclusive)") low, high = intervals singleton = isinstance(vals, pdarray) lowsize = low.size if isinstance(low, pdarray) else low[0].size if tiebreak is not None and (not isinstance(tiebreak, pdarray) or tiebreak.size != lowsize): raise TypeError("Tiebreak must be pdarray of same size as number of intervals") if singleton: # argument validation for pdarray if vals.dtype not in (akint64, akuint64, akfloat64, bigint): raise TypeError("arguments must be numeric arrays") if not isinstance(low, pdarray) or not isinstance(high, pdarray): raise TypeError("intervals must be same objtype as vals") # validate the dtypes if vals.dtype != low.dtype or vals.dtype != high.dtype: raise TypeError( f"vals and intervals must all have the same dtype. " f"Found {low.dtype}, {high.dtype}, and {vals.dtype}" ) if vals.dtype == bigint: return search_intervals( vals.bigint_to_uint_arrays(), (low.bigint_to_uint_arrays(), high.bigint_to_uint_arrays()), tiebreak=tiebreak, hierarchical=True, ) # verify lower and upper bounds are same length if low.size != high.size: raise ValueError("Lower and upper bound arrays must be same size") # verify upper bounds are greater than lower bounds if not (high >= low).all(): raise ValueError("Upper bounds must be greater than lower bounds") if not low.is_sorted(): raise ValueError("Intervals must be sorted in ascending order") not_overlapping = (low[1:] > high[:-1]).all() valsize = vals.size perm = argsort(concatenate((low, vals, high))) else: # argument validation for multi-array if not isinstance(low, Sequence) or not isinstance(high, Sequence): raise TypeError("intervals must be same objtype as vals") if len({len(low), len(high), len(vals)}) != 1: raise TypeError("Multi-array arguments must have same number of arrays") if ( any(not isinstance(v, pdarray) for v in vals) or any(not isinstance(lo, pdarray) for lo in low) or any(not isinstance(hi, pdarray) for hi in high) ): raise TypeError("All elements of Multi-array arguments must be pdarrays") valsize = {v.size for v in vals} lowsize = {lo.size for lo in low} highsize = {hi.size for hi in high} if len(valsize) != 1 or len(lowsize) != 1 or len(highsize) != 1: raise TypeError("Multi-array arguments must be non-empty and have equal-length arrays") # validate the dtypes valtypes = np.array([v.dtype for v in vals]) lowtypes = np.array([lo.dtype for lo in low]) hightypes = np.array([hi.dtype for hi in high]) if (valtypes != lowtypes).any() or (valtypes != hightypes).any(): raise TypeError("Values and intervals must have matching dtypes") for t in valtypes: if t not in (akint64, akuint64, akfloat64): raise TypeError("arguments must be numeric arrays") valsize = valsize.pop() lowsize = lowsize.pop() highsize = highsize.pop() # verify lower and upper bounds are same length if lowsize != highsize: raise ValueError("Lower and upper bound arrays must be same size") # verify upper bounds are greater than lower bounds if hierarchical: if not is_cosorted(low): raise ValueError("Intervals must be sorted in ascending order") bounds_okay = True checked = zeros(lowsize, dtype=bool) needtocheck = ones(lowsize, dtype=bool) for lo, hi in zip(low, high): if (needtocheck & (hi < lo)).any(): bounds_okay = False break checked |= needtocheck & (lo < hi) if checked.all(): bounds_okay = True break needtocheck &= lo == hi # check non_overlapping left = high[0][:-1] right = low[0][1:] not_overlapping = True if (left <= right).any(): not_overlapping = False else: boundary = left != right for lo, hi in zip(low[1:], high[1:]): left = hi[:-1] right = lo[1:] _ = left <= right if not (_ | boundary).all(): not_overlapping = False break boundary = boundary | (left != right) else: bounds_okay = all((hi >= lo).all() for hi, lo in zip(high, low)) if not bounds_okay: raise ValueError("Upper bounds must be greater than lower bounds") perm = coargsort([concatenate((lo, va, hi)) for lo, va, hi in zip(low, vals, high)]) if singleton or (isinstance(vals, Sequence) and hierarchical): # Index of interval containing each unique value (initialized to -1: not found) containing_interval = -ones(valsize, dtype=akint64) # iperm is the indices of the original values in the sorted array iperm = argsort(perm) # aku.invert_permutation(perm) boundary = valsize + lowsize # indices of the lower bounds in the sorted array starts = iperm[:lowsize] # indices of the upper bounds in the sorted array ends = iperm[boundary:] # which lower/upper bound pairs have any indices between them? valid = ends > starts + 1 if valid.sum() > 0: # pranges is all the indices in sorted array that fall between a lower and an uppper bound segs, pranges = gen_ranges(starts[valid] + 1, ends[valid]) # matches are the indices of those items in the original array matches = perm[pranges] # integer indices of each interval containing a hit hit_idx = arange(valid.size)[valid] # broadcast interval index out to matches match_interval_idx = broadcast(segs, hit_idx, matches.size) # make sure not to include any of the bounds themselves valid_match = (matches >= lowsize) & (matches < boundary) match_interval_idx = match_interval_idx[valid_match] # indices of unique values found (translated from concat keys) uval_idx = matches[valid_match] - lowsize if not_overlapping: # set index of containing interval for uvals that were found containing_interval[uval_idx] = match_interval_idx[valid_match] else: # break ties for values contained in more than one interval by_item = GroupBy(uval_idx) if tiebreak is None: best_match_idx = by_item.permutation[by_item.segments] else: _, best_match_idx = by_item.argmin(tiebreak[match_interval_idx]) # set index of containing interval for uvals that were found containing_interval[by_item.unique_keys] = match_interval_idx[best_match_idx] return containing_interval elif isinstance(vals, Sequence): # Index of interval containing each unique value (initialized to -1: not found) containing_interval = -ones(valsize, dtype=akint64) perm = [argsort(concatenate((lo, v, hi))) for lo, v, hi in zip(low, vals, high)] # iperm is the indices of the original values in the sorted array iperm = [argsort(p) for p in perm] # aku.invert_permutation(perm) boundary = valsize + lowsize # indices of the lower bounds in the sorted array starts = [ip[:lowsize] for ip in iperm] # indices of the upper bounds in the sorted array ends = [ip[boundary:] for ip in iperm] # which lower/upper bound pairs have any indices between them? # take the logical AND of all elements in list valid = functools.reduce(lambda x, y: x & y, [e > s + 1 for e, s in zip(ends, starts)]) if valid.sum() > 0: # pranges is all the indices in sorted array that fall between a lower and # an uppper bound for each dimension segs, pranges = zip(*[gen_ranges(s[valid] + 1, e[valid]) for s, e in zip(starts, ends)]) # matches are the indices of those items in the original array matches = [pm[pr] for pm, pr in zip(perm, pranges)] # integer indices of each one-dimensional interval containing a hit hit_idx = arange(valid.size)[valid] # broadcast 1-d interval index out to matches match_interval_idx = [broadcast(s, hit_idx, m.size) for s, m in zip(segs, matches)] # make sure not to include any of the bounds themselves valid_match = [(m >= lowsize) & (m < boundary) for m in matches] # indices of values found (translated from concat keys) in 1-d intervals uval_idx = [m[vm] - lowsize for m, vm in zip(matches, valid_match)] # now go from 1-d to full dimensionality # for each interval, intersect the hits from its 1-d projections # do this by concatenating all the projections and grouping on the id of the hit # and the interval and looking for hits that cover all dimensions all_uval_idx = concatenate(uval_idx, ordered=False) all_match_interval_idx = concatenate( [mi[vm] for mi, vm in zip(match_interval_idx, valid_match)], ordered=False ) by_val_interval = GroupBy([all_uval_idx, all_match_interval_idx]) # a true hit happens when a value is contained in all of an interval's 1-d projections is_a_hit = by_val_interval.size()[1] == len(low) # indices of the true hits and their containing intervals val_hits, interval_hits = [x[is_a_hit] for x in by_val_interval.unique_keys] # a value might be found in more than one interval, so we need to break ties by_val = GroupBy(val_hits) if tiebreak is None: best_match_idx = by_val.permutation[by_val.segments] else: _, best_match_idx = by_val.argmin(tiebreak[interval_hits]) # set index of best containing interval for values that were found containing_interval[by_val.unique_keys] = interval_hits[best_match_idx] return containing_interval else: raise TypeError("arguments must be numeric pdarrays or a sequence of numeric pdarrays")
[docs] def is_cosorted(arrays): """ Return True iff the arrays are cosorted, i.e., if the arrays were columns in a table then the rows are sorted. Parameters ---------- arrays : list-like of pdarrays Arrays to check for cosortedness Returns ------- bool True iff arrays are cosorted. Raises ------ ValueError Raised if arrays are not the same length TypeError Raised if arrays is not a list-like of pdarrays """ if not isinstance(arrays, Sequence) or not all(isinstance(array, pdarray) for array in arrays): raise TypeError("Input must be a list-like of pdarrays") # check for equal length if len({array.size for array in arrays}) > 1: raise ValueError("Arrays must all be same length") # fail fast if the first array isn't sorted if not arrays[0].is_sorted(): return False # initialize the array to track boundary boundary = arrays[0][:-1] != arrays[0][1:] for array in arrays[1:]: left = array[:-1] right = array[1:] _ = left <= right if not (_ | boundary).all(): return False boundary = boundary | (left != right) return True
[docs] def interval_lookup(keys, values, arguments, fillvalue=-1, tiebreak=None, hierarchical=False): """ Apply a function defined over intervals to an array of arguments. Parameters ---------- keys : 2-tuple of (sequences of) pdarrays Tuple of closed intervals expressed as (lower_bounds_inclusive, upper_bounds_inclusive). Must have same dtype(s) as vals. values : pdarray Function value to return for each entry in keys. arguments : (sequences of) pdarray Values to search for in intervals. If multiple arrays, each "row" is an item. fillvalue : scalar Default value to return when argument is not in any interval. tiebreak : (optional) pdarray, numeric When an argument is present in more than one key interval, the interval with the lowest tiebreak value will be chosen. If no tiebreak is given, the first valid key interval will be chosen. Returns ------- pdarray Value of function corresponding to the keys interval containing each argument, or fillvalue if argument not in any interval. """ if isinstance(values, Categorical): codes = interval_lookup(keys, values.codes, arguments, fillvalue=values._NAcode) return Categorical.from_codes(codes, values.categories, NAvalue=values.NAvalue) idx = search_intervals(arguments, keys, tiebreak=tiebreak, hierarchical=hierarchical) arguments_size = arguments.size if isinstance(arguments, pdarray) else arguments[0].size res = zeros(arguments_size, dtype=values.dtype) if fillvalue is not None: res.fill(fillvalue) found = idx > -1 res[found] = values[idx[found]] return res